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1.1 Scope of Research 

   Biomaterials are defined as materials that can be adapted for use with elements that 

comprise biological bodies, such as biologically relevant molecules and cells, and can 

also be utilized in direct contact with the biological body [1]. In the polymer 

biomaterials field, molded articles, surgical materials, and polymeric drugs have been 

put to practical use [2]. 

For example, blood bags, artificial blood vessels, and syringes are made from 

molded commodity resins such as poly(vinyl chloride), polytetrafluoroethylene, and 

polypropylene. The surgical materials, suture thread, and bolts for the treatment of 

fractures are made from poly(lactic acid), hydroxyapatite, etc. In polymeric drugs, the 

drug delivery system (DDS) and gene therapy are well known and these techniques are 

aggregate introduced poly(ethylene glycol) (PEG) and liposome into copolymer. 

Biomaterials have wide-ranging applications, but the common properties required for 

ensuring interaction between the biological body and the material are biocompatibility, 

non-toxicity, antibiotic activity, strength, and functionality [3].  

Biomaterials based on polymers have advantages over ceramic and metallic 

materials in terms of molecular design when considering interactions with biological 

bodies. Moreover, polymeric biomaterials have excellent transparency, weight, 

flexibility, and workability compared to metallic and ceramic biomaterials, and is 

adaptable to needs and technologies for greater sophistication and diversity. Therefore, 

to express functions for biomaterials, polymer design is assumed increasing importance 

in association with highly development of medical technology. Due to the constant 

efforts of researchers, many kinds of polymeric biomaterials have been developed and 

improved. The author focused on high functional devices, polymer colloids, polymer 
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membranes, and polymer gels composed of multicomponent copolymers (Figure 1.1). 

Three types of materials are expected and applied to biomaterial. The author designed 

and synthesized a novel amphiphilic graft copolymer by introducing functional group to 

change the physical and chemical properties. The graft copolymer was synthesized by 

the macromonomer method (Figure 1.2). The advantage of this method is that the 

hydrophilic–hydrophobic balance parameter could be controlled by altering the segment 

length and monomer composition ratio at the point of synthesis. The author conducted 

the study from the viewpoint of molecular design for the applications of biomaterials. 
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Figure 1.1.  Illustrations of various polymeric materials. 

Polymer 

Substrate 



4 

 

 

 

 

 

 

 

 

 

: A segment 

: B segment 

Low High 

High 

C
o

m
p

o
si

ti
o

n
 r

at
io

 o
f 

B
 s

eg
m

e
n
t 

Polymerization degree of B segment 

Figure 1.2.  Illustration of the graft copolymer synthesized by the macromonomer 

method. Using this method, different graft copolymers can be obtained by altering 

the polymerization degree and composition ratio of the side chain. 
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1.2 Amphiphilic Copolymers 

1.2.1 Amphiphilic Block Copolymers 

   Among copolymers, random copolymers are the most popular and have an irregular 

polymer structure formed by the connection of heterogeneous monomers (Figure 1.3(a)). 

On the other hand, block copolymers are constructed by covalent bonding between 

different polymer chains, so AB-type, ABA-type, and ABC-type copolymers are pattern 

(Figure 1.3(b and c)). The properties of block copolymer by polymer design are 

different by structure, ratio of components, polymerization degree, conjugation 

sequence, etc. Therefore, many types of phase-separated structures are formed and are 

expressed in novel functions under various systems. The study of block copolymers is 

actively researched. Amphiphilic block copolymers are composed of hydrophilic and 

hydrophobic segments and can be used to create novel functional polymeric materials 

[4–8]. For example, poly(hydroxethyl methacrylate)–block–polystyrene (PHEMA–b–

PSt), a hydrophilic–hydrophobic diblock copolymer forms a lamellar layer and has 

excellent blood compatibility [9, 10]. The synthesis of block copolymers can be carried 

out by precise methods such as living polymerization [11–13].  

(a) Random copolymer 

(b) AB Diblock copolymer 

(c) ABC Triblock copolymer 

Figure 1.3.  Illustrations of general random and block copolymers. (a) Random 

copolymer, (b) AB diblock copolymer, and (c) ABC triblock copolymer. 
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1.2.2 Amphiphilic Graft Copolymers 

Graft polymerization introduces side chain polymers or oligomers in the main 

polymer chain, and the resulting copolymers are called star-shaped polymers, 

comb-shaped polymers, brush-shaped polymers, etc. The properties of graft copolymer 

can be changed by altering the number and length of the side chains. Polymer particle 

and substrate surface are able to introduce graft chains such as chemical reaction. 

Amphiphilic poly(dextran–graft–poly(lactic acid)) was reported to control the 

biodegradable rate in body [14]. Different polymer designs can be used to create novel 

functions. The synthesis of graft copolymers is classified into three main types, viz. the 

grafting-from method, grafting-onto method, and grafting-through method 

(macromonomer method) [15] (Figure 1.4). In the grafting-from method, the main chain 

Polymer Graft chain 

Macromonomer Monomer 

(initiator) 

Monomer 

(a) Grafting-from method  

Polymer having initiate points 

(c) Grafting-through method (Macromonomer method) 

Monomer 

(b) Grafting-onto method  

Monomer 

Figure 1.4.  Illustrations of the synthesis methods of graft copolymers. (a) 

Grafting-from method, (b) grafting-onto method, and (c) grafting-through method 

(macromonomer method). 
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polymer is formed by building up from the reaction initiator, and then the monomer 

polymerizes onto this polymer (Figure 1.4(a)) [14]. This method is able to control the 

polymerization degree for precise polymerization, and can be used for the surface 

polymerization of materials using silane as the coupling agent [16]. 

The grafting-onto method introduces side chain polymers into the main chain 

polymer by chemical modification (Figure 1.4(b)). In this method, the length of the side 

chain is controlled, but controlling the introduction ratio is difficult because of the steric 

hindrance of the macromolecule.  

The macromonomer method introduces polymerizable functional groups into the 

oligomer (or polymer) end group to form macromonomers (Figure1.4(c)). Subsequently, 

polymerization is carried out using the prepared macromonomers and monomer. The 

macromonomer method can easily control the composition ratio and provides a clear 

polymer structure (Figure 1.2) [17, 18].  

These methods can be used to design various polymer structures. In this thesis, the 

author used the macromonomer method for polymer synthesis. 

 

 

1.3 Main Polymer Biomaterials 

1.3.1 Polymer colloids 

   Polymer colloids can be stably dispersed in solution and are widely applied in a 

variety of industries, including the food, medical, cosmetic, electrical, and paint 

industries. Microparticulated substances increase the surface area and are advantageous 

for functionality development. In medical fields, polymeric particles are used for 

diagnosis and in nano-capsules as drug- or gene-loading carriers. This technique is 
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called DDS. Injectable DDS can offset the side effects of drug molecules and is capable 

of spatially, quantitatively, and temporally controlled release. For example, Ringsdorf 

suggested a polymer backbone model in 1975 [4, 19]. This DDS model was still 

standard even now. This method was combining transport, drug, spacer, and solubilizer 

with polymer backbone. Polymer colloids were generally formed by 

microphase-separated structure by copolymer composed of hydrophilic segment and 

hydrophobic segment into one copolymer, wherein the hydrophilic segment is the outer 

shell and the hydrophobic segment is the inner core in aqueous solution [4–8, 20, 21]. In 

DDS, the hydrophilic segment is appropriate in biocompatible polymers for suppressing 

non-specific interactions with biomolecules such as proteins. A stimuli-responsive 

polymer capable of releasing the drug molecule is selected as the hydrophobic segment 

[22]. Kataoka et al. actively studied the DDS technique using hydrophilic 

PEG-modified copolymer carrier [23, 24]. A functional DDS carrier responsive to 

thermal, photochemical, and pH-related stimuli was recently studied [25–28].  

 

1.3.2 Polymer Membranes 

   Polymer membranes are extensively used as molecular separation membrane, in 

water treatment, and in fuel cells. In the field of biomaterials, it is used in culture dishes, 

artificial joints, and dialysis machines [29]. The interface exists in all materials, , so the 

analysis of interface phenomenon is important. The biocompatibility of polymeric, 

ceramics, and metallic materials after polymer coating plays a role in the interface 

phenomenon. In the field of biomaterials, the poly(2-methacryloyloxyethyl 

phosphorylcholine) (PMPC) copolymer containing cellular membrane similar structure 

and the poly(2-methoxyethyl acrylate) (PMEA) copolymer having intermediate water 
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have attracted a lot of attention recently [30–35]. The poly(MPC–co–n-butyl 

methacrylate (BMA)) (PMB) copolymer showed different interface properties in air and 

water. This copolymer is achieved to express antithrombotic effect with materials in 

vivo, which materials put practical applications in medical front [33–35]. Therefore, 

ceramic or metallic biomaterials coated with MPC copolymers prevent the absorption of 

proteins and this ability is important for avoiding inflammation on using implants over 

long periods. Thus, the development of surface preparation agents having 

biocompatibility is imperative and is being actively pursued. 

 

1.3.3 Polymer Hydrogels  

   Hydrogels are well known as water-absorbing bases for diapers, contact lenses, and 

greening deserts. In biomaterial fields, hydrogels are used in implantable materials, 

wound dressing, artificial muscle, and actuators, and their long-term impact are studied 

[36–38]. Polymer hydrogels form network structure by cross-linking between polymers. 

And the cross-link is classified based on the type of physical, chemical, and mechanical 

bonding [39, 40]. Physically cross-linked hydrogels have reversibly combination pattern 

as van der Waals force, electrostatic interaction, hydrogen bonding, and hydrophobic 

interaction, and volume changes such as swelling and shrinking can be caused by 

changing the external environment, salt concentration, electric field, temperature etc. 

Chemically cross-linked hydrogels are formed by irreversible covalent bonding, and are 

insulated from external influence. Mechanically cross-linking bridged site of 

topological gel is sliding on polymer network and increase mechanical strength. These 

hydrogels can load not only drug molecules but can also absorb solution such as culture 

media and bodily fluids. For example, a functional hydrogel-recognized by biomolecule 
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was reported to show swelling–shrinking behavior by formation and disassociation 

interaction of cross-linkage site by antigen-antibody reaction, thus the change in size by 

molecular recognition is applied for diagnosis system [41]. In this way, the inside of the 

hydrogel network is used the reaction domain, and the functional hydrogel is actively 

studied at present. 

 

 

1.4 Poly(trimethylene carbonate) 

Biocompatible and biodegradable polymers, such as poly(L-lactic acid) (PLA) and 

poly(ε-caprolactone) (PCL), have been widely studied for use as biomaterials (Figure 

1.5) [14, 42–46].
 
In particular, PLA, which is derived from corn and potato, is obtained 

in large amounts using established industrial methods and is widely used for 

biomaterials, packaging films, vehicular components, etc. Although the PLA polymer 

has high mechanical strength because of its crystallinity, it has low compatibility with 

soft tissue due to its flexibility. Moreover, in degradable process of PLA, the noxious 

acid substrate to biological cell is formed. On the other hand, as an aliphatic 

polycarbonate, poly(trimethylene carbonate) (PTMC) is one of the hydrophobic 

polymers that has been investigated for biomedical applications [47–54]. PTMC has a 

number of advantageous properties that PLA and PCL do not have. 

Figure 1.5.  Chemical structures of (a) poly(L-lactic acid) (PLA) and (b) 

poly(ε-caprolactone) (PCL). 

(a) PLA (b) PCL 
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O
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In this study, the author focused on the hydrophobic PTMC polymer. As a 

biodegradable polymer, PTMC is approved by the Food and Drug Administration and is 

a well-known biomaterial that is easily prepared from trimethylene carbonate (TMC) as 

cyclic monomer. TMC is polymerized at the hydroxyl group by a conventional 

ring-opening polymerization (ROP) technique using metal-free catalyst [55–57] 

(Scheme 1.1). The biodegradable PTMC indicates in vivo degradability by lipase 

enzyme without the formation of acidic degradation products, 1,3-propanediol and 

carbon dioxide . In addition, it has good biocompatibility, amorphous properties with a 

low glass transition temperature, and an easy and precise synthesis procedure. Therefore, 

the PTMC polymer as soft material is more compatible with soft tissues than the 

crystalline polymer. Conversely, in PTMC homopolymer, the fragile property is needed 

to compensate by copolymerization using other monomer. The materials of PTMC make 

it a promising candidate for use in tissue engineering, drug delivery systems, and 

surgical sutures.
 
Watanabe et al. reported that polymer film created from block 

copolymer comprising PEG as the hydrophilic segment and PTMC as the hydrophobic 

segment has been selectively incorporated into an organic dye [51]. The fundamental 

mechanism for molecular incorporation is the spontaneous dynamic molecular motion 

of hydrophilic segments on the outermost surface. Therefore, surface enrichment with 

Scheme 1.1.  Synthetic route towards the poly(trimetylene carbonate) (PTMC) 

copolymer. 

Catalyst 

+ 

Hydroxyl group TMC R–PTMC 

R OH
C OCH2CH2CH2O

O

HRO n
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hydrophilic segments would create an excellent interface between aqueous solutions and 

the PTMC membrane. Selectivity toward the organic dye could be achieved by 

changing the polarity of the dye molecules with respect to the hydrophobic environment 

created by the block copolymer. Thus, the PTMC derivative is designed and synthesized. 

Functionally, the PTMC copolymer is studied as a reverse temperature-responsive gel 

(PEG–PTMC diblock copolymer), surface preparation material (PTMC derivative) for 

biomaterials, and a DDS for protein loading and release (PTMC diols, 

poly(2-ethyl-2-oxazoline) (PEtOz)–block–PTMC, etc.) (Figure 1.6) [43, 52, 53, 58, 59]. 

Other amphiphilic polymers with hydrophobic and hydrophilic segments self-assemble 

to form hydrophobic domains in aqueous media. Thus, amphiphilic copolymers have 

enormous potential as DDS for enhancing drug-loading efficiency [60]. DDS vehicles 

in solution consist of stable core–shell structure formed by the aggregation of polymer 

chains. In many studies, biocompatible amphiphilic block copolymers have been 

designed using PEG, poly(methacrylic acid), and PMPC as the hydrophilic segment, 

and PLA, PCL, or PTMC as the hydrophobic segment [42, 43, 50, 61–63]. 

 

 

CH3O CH2CH2O R
n

NCH2CH2 OR

C O

n

CH2CH3

Figure 1.6.  Chemical structures of (a) PEG–PTMC diblock copolymer and (b) 

PEtOz–block–PTMC. 

R: PTMC 

(a) PEG–PTMC (b) PEtOz–block–PTMC 
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1.5 Polymer Synthesis Method Used in This Study 

1.5.1 Free Radical Polymerization 

   Free radical polymerization as an addition polymerization technique is a 

representative synthesis method in polymer science. In the case of the radical activated 

species, the polymerization is divided into four steps [15]. These elementary steps are 

called radical production, initiation, propagation, and termination via recombination or 

disproportionation. Initiators such as 2,2’-azobisisobutyronitrile and benzoyl peroxide 

were exposed to heat and light energy, which led to radical formation. This radical is 

reacted from vinyl monomer to vinyl monomer as chain-transfer reaction, and the active 

polymer grows to produce a polymer having high polymerization degree. Termination 

of active polymerization rapidly occurs by drawing hydrogen atoms or through 

recombination of polymers. As features of this polymerization method, the produced 

polymer has a high polymerization degree and a wide molecular weight distribution. 

 

1.5.2 Ring-opening Polymerization 

   Cyclic monomers undergo ring-opening to overcome steric strain and is provided 

linear polymer by polymerizing reaction. Therefore, when the ring strain is high, 

polymerization proceeds to release the strain energy. The polymers using for 

biomaterials are PLA, poly(lactone), poly(dimethyl siloxane), PEG, poly(2-oxazoline), 

etc. [3, 42–46, 59]. These polymers are obtained by ROP. Polymerization by the ROP 

technique is easier and affords better yield than condensation polymerization. 
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1.6 Objective of this Thesis and Its Contents 

This thesis is composed of seven chapters. The author conducted research on three 

types of materials such as polymer colloids, polymer membranes, and polymer gels 

(Figure 1.7). These materials were synthesized by macromonomer method and 

evaluated by material characterization in terms of polymer design for biomaterials. The 

author found that functionalities of these polymer materials were expected to apply for 

biomaterial fields. 

Chapter 1 is a general introduction describing polymer biomaterials as colloids, 

hydrogels, and membranes. In the polymeric biomaterial section, to understand the 

polymeric biomaterial is more advantage than other materials and utilized biomaterials. 

In the polymer structure and materials section, the main copolymer is simple and is 

described by a study example. Moreover, we described reasons why some have chosen 

PTMC polymer and synthesis method in this study. 

Chapter 2 describes polymer colloid gel formation from amphiphilic graft 

copolymers. This colloid gel spontaneously formed a micro network structure due to the 

driving forces of both hydrogen bonding and hydrophobic interactions in aqueous 

solution. For biomaterials, conventional polymer aggregation occurs due to molecular 

interactions, such as hydrophobic interactions, hydrogen bonding, and electrostatic 

interactions in solution. Polymer aggregation caused by several interactions has not 

been widely researched. Thus, the author had the objective of studying colloid particle 

preparation formed by from two type physical bonding and analyzed the solution 

properties. The author observed that hydrogen bonds dissociate upon heating and the 

particle size is changed. In addition, polymer colloids with different hydrophobic 

domain sizes were analyzed using the fluorescence probe method.  
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Chapter 3 describes about the functional polymer colloid preparation as basic design 

of graft copolymer in Chapter 2. Thermal responsiveness is one of the easily controlled 

external stimuli. The author focused on poly(N-isopropyl acrylamide) (poly(NIPAAm)) 

as a thermo-responsive polymer and designed the poly(N-hydroxyethyl acrylamide–co–

NIPAAm–co–HEAA–PTMC) copolymer. This colloid gel derived from acrylamide 

polymer was investigated by reversibly altering the solution properties by hydration and 

dehydration under heating–cooling state. Furthermore, analysis of hydrophobic domains 

in the colloid gel was carried out using the fluorescence probe and fluorescence 

quenching methods. 

Chapter 4 describes the molecular design of the polymer membrane for regulating 

surface properties. The author synthesized copolymers having hydrophilic and 

hydrophobic segments. The wettability of the amphiphilic random copolymer is 

maintained under the various conditions. Therefore, surface segregation by the polymer 

membrane is scarcely reported. The control of wettability, control of surface free energy, 

is important factors for affinity towards materials and biomolecules as well as adhesion–

release. In Chapter 4, the author synthesized amphiphilic graft copolymers having 

different non-ionic segments by using the macromonomer method. Thus, the author 

conducted a study for controlling the wettability by altering the chain length and 

composition ratio of the hydrophobic PTMC segment. In terms of wettability, the 

surface property of the polymer membrane and the segment mobility of the copolymer 

were investigated by static contact angle measurements, microscopy observation, and 

differential scanning calorimetry analysis. 

Chapter 5 describes the polymer design of hydrogels having a hydrophobic segment 

as the side chain. Conventional hydrogel composed of only hydrophilic segments 
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absorb low amounts of drug molecule and high amounts of water. In this chapter, the 

author attempted to improve the incorporation property of PTMC and the inhibition of 

swelling behavior by altering the cross-linking density. As a hydrophilic polymer, 

2-acrylamidoglycolic acid (AGA) monomer with high hydrogen bonding was used as 

the main chain and the swelling ratio was controlled by physically cross-linking site and 

hydrogen bonding formation with hydroxyl, carboxyl, and amide groups. Thus, this 

prepared hydrogel with amphiphilic properties can be widely applied as a biocompatible 

and biodegradable soft material. 

   Chapter 6 describes the functionally of the improved hydrogel as a basic design of 

the amphiphilic graft gel in Chapter 5. The author selected three types of hydrophilic 

monomers, viz. 2-acrylamido-2-methylpropanesulfonic acid (AMPS), N-hydroxyethyl 

acrylamide (HEAA), and 2-hydroxyethyl acrylate (HEA). The purpose of this chapter 

was to examine the effectiveness of the soft material in terms of swelling ratio and 

model drug molecule loading. A number of different polar molecules were used and the 

selective molecule incorporative ability of each graft gel was evaluated by UV–Vis 

spectroscopy. These functional graft gels are expected to be used as DDS carriers, 

wound dressings, and adhesion prevention materials. The author synthesized 

amphiphilic graft gels by thermal polymerization or photo polymerization.  

Chapter 7 is the conclusion of this thesis. The features of the amphiphilic graft 

copolymer introducing PTMC segment are summarized. 
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1.7 Main Instruments Used for Characterization in This Study 

The author used the following instruments listed below. 

・ Proton nuclear magnetic resonance (
1
H NMR) spectrometer: Unity INOVA AS 500 

MHz and Varian 300–MR (Varian Technologies Japan Co., Ltd., Tokyo, Japan). 

 

・ Fourier transform infrared spectroscopy (FT–IR) measurement device: FT/IR–4200, 

JASCO Co., Ltd., Tokyo, Japan. 

 

・ Gel permeation chromatography (GPC) measurement device; Shodex RI–71, UV–

41, DS–4, and OVEN AO–30 (Showa Denko, Co., Ltd., Tokyo, Japan Showa Denko 

Co., Ltd., Tokyo, Japan) or UV–2075 Plus, RI–2031 Plus, PU–2080 Plus, AS–2055 

Plus, and CO–2060 Plus (JASCO, Co., Ltd., Tokyo, Japan). All polymer samples 

and polystyrene as the standard substance were dissolved in 

N,N-dimethylformamide (DMF) at a concentration of 1 mg/mL in the presence of 10 

mmol/L lithium bromide. GPC measurements were performed with a Shodex 

column (SB–804HQ or KD–804, Showa Denko Co., Ltd., Tokyo, Japan) with DMF 

eluent flow rate of 0.5 or 1.0 mL/min.  

 

・ Field-emission scanning electron microscopy (FE–SEM): VE–9800, KEYENCE 

Co., Ltd., Osaka, Japan. Sputter-coating with platinum: JFC–1600 AUTO FINE 

COATER, JEOL Co., Ltd., Tokyo, Japan. 

 

・ Atomic force microscopy (AFM): SPM–9700, SHIMADZU, Co., Ltd., Kyoto, 

Japan 
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・ Differential scanning calorimetry (DSC) measurement device: Thermo Plus 

DSC8230, Rigaku Co., Ltd., Tokyo, Japan.  

 

・ Dynamic light scattering (DLS) measurement device: Zetasizer Nano ZS, Malvern 

Instruments Co., Ltd., Malvern, UK.  

 

・ Fluorescence spectrometer: F–2500 (Hitachi Co., Ltd., Tokyo, Japan.) or JASCO 

FP–8300 (temperature variable type) (JASCO Co., Ltd. Tokyo, Japan). 

 

・ Temperature variable UV–Vis spectrometer: JASCO V–650, JASCO Co., Ltd., 

Tokyo, Japan. 

 

・ Ultrapure water manufacturing equipment: Direct–Q 3 UV MILLIPORE, Japan 

Millipore Co., Ltd., Tokyo, Japan. 

 

・ Static contact angle measurement device: Drop Master 700 KYOWA Interface 

Science Co., Ltd., Saitama, Japan. 

 

・ Spin coater: SC–200, Oshigane Co., Ltd., Saitama, Japan. 
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2.1 Introduction 

Amphiphilic polymer with hydrophobic and hydrophilic segments self-assemble is 

known to form self-assembled structure having hydrophobic domain in aqueous media. 

Thus, amphiphilic copolymers have enormous potential as drug delivery systems (DDS) 

to enhance drug loading efficiency [1–3]. DDS vehicles in solution consist of a stable 

core–shell structure formed by the aggregation of polymer chains [1–10]. 

The author proposed and prepared an amphiphilic graft copolymer [11, 12]. The 

author evaluated the polarity of the hydrophobic domain formed by 

poly(N-hydroxyethyl acrylamide) (poly(HEAA)) grafted with poly(trimethylene 

carbonate) (PTMC), (Poly(HEAA–graft–PTMC) (PHET), in aqueous solution. The 

driving forces for the self-assembly are hydrogen bonding and hydrophobic interaction, 

and these properties can be adjusted by changing the composition ratio and the chain 

length of the macromonomer. Thus, PHET copolymers in aqueous solution could 

spontaneously form aggregates because of these driving forces [12]. 

In this chapter, the author prepared three kinds of amphiphilic graft copolymers. 

Two of these had similar hydrophobic chain lengths but different monomer composition 

ratios. The other combination had a similar total chain length, but different lengths of 

the hydrophobic segments. Thus, the effect of each molecular force could be evaluated 

in terms of polymer colloid formation for molecular encapsulation. 

The author studied the properties of the PHET copolymers as well as their critical 

association concentrations (CAC) and partition equilibrium constants (Kv). The process 

of aggregation changes the properties of the solution, such as surface tension, turbidity, 

and light scattering intensity. Amphiphilic copolymer is known to forming micelle 

structure at lower CAC than surfactant of low molecular weight in aqueous solution. 
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Therefore, these amphiphilic copolymers are thermodynamicically stable [13]. 

Moreover, determining the values of CAC and Kv value is important for DDS, as they 

help in gauging the drug-loading ability of the aggregates. Kv value for partitioning of 

pyrene between the aqueous and aggregation phase represents one of the critical 

parameters related to aggregation stability. The CACs and Kv of the PHET copolymers 

were calculated by a fluorescence probe technique using the hydrophobic molecule 

pyrene, which is commonly employed to evaluate hydrophobic environments in 

aggregated structures [13–18]. The resulting data regarding the aggregate formation are 

extremely important for in vivo studies of this DDS vehicle in biomedical applications. 
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2.2 Experimental Section 

2.2.1 Materials 

In order to synthesize the macromonomer, the conventional ring-opening 

polymerization (ROP) was performed. Trimethylene carbonate (TMC) was purchased 

from Boehringer Ingelheim GmbH (Ingelheim, Germany). HEAA was provided by 

KOHJIN Co., Ltd. (Tokyo, Japan). 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) (Kanto 

Chemical Co., Ltd., Tokyo, Japan) was used as a basic organocatalyst. The termination 

reaction of the ROP was performed using benzoic acid (Wako Pure Chemical Industries 

Co., Ltd., Osaka, Japan). To synthesize amphiphilic graft copolymers with the oligo 

PTMC segments, radical polymerization was carried out using 

2,2′-azobis(isobutyronitrile) (AIBN; Tokyo Chemical Industry Co., Ltd., Tokyo, Japan) 

as the initiator. Pyrene was selected as a fluorescence probe and was purchased from 

Wako Pure Chemical Industries (Figure 2.1). All organic solvents were used as received. 

 

2.2.2 Synthesis of HEAA–PTMC Macromonomer 

Conventional ROP of TMC monomer from HEAA as initiator was first performed to 

obtain HEAA–PTMC macromonomer according to our previously reported procedure 

[11]. The synthesis of HEAA–PTMC macromonomers with 10 units of TMC was as 

follows: HEAA (102.8 μL, 1.0 mmol) and TMC (1.02 g, 10 mmol) were dissolved in 

methylene chloride (CH2Cl2) (30 mL). A solution of DBU (152.2 μL, 1.0 mmol) in 

Figure 2.1.  Chemical structure of pyrene. 
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CH2Cl2 was then added to the flask, and the solution was mixed. The final concentration 

of DBU was adjusted so as to not be greater than 30 mmol/L. The ROP was carried out 

under nitrogen atmosphere at room temperature for 24 h (Scheme 2.1). For the 

termination reaction, benzoic acid was added in order to inactivate the terminal 

hydroxyl group. The obtained solution including crude product was concentrated to 10 

mL by rotary evaporation and was poured into a large amount of either a 

2-propanol/water (2:1) mixture or undiluted 2-propanol in order to precipitate the 

resulting macromonomer. The final product was dried under reduced pressure to give in 

good yield. The degree of polymerization (DP) was calculated from the proton nuclear 

magnetic resonance (
1
H NMR) spectrum. The synthesized HEA–PTMC 

macromonomers contained 10 or 50 TMC units. 
1
H NMR (500 MHz, CDCl3) δ: 2.1 (m, 

2H, –CH2–CH2–CH2–), 3.6 (q, 2H, –CH2–CH2–O–), 3.7 (t, 2H, –NH–CH2–CH2–), 4.2 

(t, 4H, –O–CH2–CH2–CH2–), 5.6 (d, 1H, CH2=CH–C(=O)–O–), 6.1 (q, 1H, H–

CH=CH–), 6.2 (br, 1H, –C(=O)–NH–CH2–), 6.3 (d, 1H, H–CH=CH–). 

 

 

 

Scheme 2.1.  Synthetic pathway of HEAA–PTMC macromonomer. 
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2.2.3 Synthesis of Amphiphilic Graft Copolymers; PHET Copolymers 

The graft copolymer was synthesized using macromonomer method [12]. To prepare 

the graft copolymer, the free radical polymerization was carried out using AIBN, HEAA, 

and HEAA–PTMC macromonomer (Scheme 2.2). The reagents were each dissolved 

and mixed in N,N-dimethylformamide (DMF). The solution was degassed under 

reduced pressure and then was substituted by nitrogen gas. The mixture solution was 

heated at 70°C for 24 h. The reaction mixture was added to acetone/2-propanol (1:4 

(v/v)), which is a poor solvent. The product was dried under reduced pressure. The 

composition ratio of HEAA to HEAA–PTMC macromonomer in the prepared graft 

copolymer was calculated from the 
1
H NMR measurement. The number of graft chains 

in the copolymer was found to be approximately 1 to 10 mol%. The molecular weight 

was determined by gel permeation chromatography (GPC). 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.11.6 (br, 3H, –CH2–CH–C(=O)–O–), 1.9 (m, 2H, –CH2–CH2–CH2–), 

3.43.5 (br, 4H, –NH–CH2–CH2–), 4.1 (t, 4H, –O–CH2–CH2–CH2–O–), 7.27.9 (br, 1H, 

–C(=O)– NH–CH2–). 

 

 

 

  

Scheme 2.2.  Synthetic pathway of poly(HEAA–graft–PTMC) (PHET). 
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2.2.4 Particle Size and Thermal Stability 

The synthesized graft copolymers spontaneously formed aggregates in aqueous 

media. In order to measure the size of these aggregates, the graft copolymer was 

dissolved in water, with ultrasonic agitation, for a short time, and then was filtered (pore 

size 0.8 μm). The copolymer solution was adjusted to a concentration at 1 mg/mL in 

water and dynamic light scattering (DLS) measurements were performed at 

temperatures ranging from 20 to 70°C. 

 

2.2.5 Determination of CAC and Partition Equilibrium Constant (Kv) 

In order to dissolve the hydrophobic pyrene probe in an aqueous solution, it was 

first dissolved in tetrahydrofuran (THF) at 1.2 × 10
–3

 mol/L [14, 16]. This solution was 

then added dropwise to water (6.0 × 10
–7

 mol/L) and vigorously stirred. THF was 

removed by rotary evaporation at 40°C for 2 h. A solution of the graft copolymer 

containing pyrene was then prepared. The final concentration of pyrene was 6.0 × 10
–7

 

mol/L. Several graft copolymer solutions were prepared, with concentrations varying in 

the range of 10
–5

 to 1 mg/mL. The excitation spectrum of pyrene was measured using a 

fluorescence spectrophotometer at room temperature. The emission was measured at 

373.0 nm with a slit-width of 5.0 nm and a scan speed of 300 nm/min. 
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2.3 Results and Discussion 

2.3.1 Synthetic Results of Macromonomer and Amphiphilic Graft Copolymer 

The polymerization of TMC was initiated from the hydroxyl end-group of HEAA. 

TMC monomer was polymerized by ROP with nucleophilic attack from the 

DBU-activated terminal hydroxyl group of HEAA [7–9, 19, 20]. Figure 2.2 shows the 

1
H NMR spectrum of HEAA–PTMC10 in CDCl3. The DP was calculated by integrating 

the 
1
H NMR spectra and comparing the ratio of the vinyl proton (5.6 ppm) of HEAA to 

the methylene protons (2.1 ppm) of PTMC. The synthesized HEAA–PTMC 

macromonomer was used in a typical radical polymerization. 
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Figure 2.2.   
1
H NMR spectrum of HEAA–PTMC10 macromonomer in CDCl3. 
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Figure 2.3 shows the 
1
H NMR spectrum of PHET in DMSO-d6. Table 2.1 was 

displayed the results of the polymer synthesis. The sample code of PHET10–1 refers to 

the compound with macromonomer composition ratio of 1 mol% with approximately 10 

repeating units of TMC in the macromonomer; the same system of nomenclature was 

applied to PHET10–10 and PHET50–1. Both the number of repeating units of TMC in 

the macromonomer and the composition ratio of the graft copolymer were calculated 

from the 
1
H NMR spectrum. PHET10–1 and PHET10–10 were similar in terms of the 

number of repeating units of TMC, whereas PHET10–1 and PHET50–1 were similar in 

macromonomer composition. PHET10–10 had higher molecular weight and larger 

Mw/Mn than the others. The GPC result showed the effect of the interaction between the 

graft copolymers, because of the Tyndall phenomenon was observed on PHET10–10 

solution in DMF. Particularly the interaction of PHET10–10 was much enhanced. 
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Figure 2.3.  
1
H NMR spectrum of PHET in DMSO-d6. 
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2.3.2 Thermal Stability of Graft Copolymer Aggregates in Aqueous Media 

The amphiphilic PHET graft copolymers spontaneously formed aggregates in 

aqueous media, driven by the hydrophobic interactions among the PTMC segments and 

the hydrogen bonding derived from HEAA. These aggregates consisted of a shell, 

covered with hydrophilic poly(HEAA) segments, and a core of PTMC domains. The 

particle size of the PHET copolymers at a concentration of 1 mg/mL in aqueous media 

was analyzed by DLS measurements.  

In Figure 2.4, the particle sizes of PHET10–1, PHET10–10, and PHET50–1 were 

approximately 30.7, 70.2, and 300.1 nm at 25°C, respectively. For each PHET 

copolymer, the total amount of PTMC segments was different. For PHET10–1 and 

PHET10–10, the HEAA–PTMC macromonomer contents were significantly different, 

although the DP of the PTMC segment was almost the same. Therefore, these two 

copolymers should have different hydrophobic properties. By comparison with 

PHET10–1, PHET50–1 copolymer had a PTMC segment which DP was five times 

higher, although the macromonomer content was quite similar. This result indicated that 

the larger particle size observed was a result of the higher hydrophobicity caused by the 

PTMC environment. In addition, the small shoulder of the particle size distribution 

indicated that the unimer was formed due to the intramolecular aggregation of PHT.  

The thermal stability of the particle as a function of temperature was measured using 

DLS (Figure 2.5). The temperature range was from 20 to 70°C. Both PHET10–10 and 

PHET50–1 remained highly stability and unchanging to dot hydrophobic domain 

formed by PTMC, but the particle size of poly(HEAA) and PHET10–1 increased in the 

interval from 60 to 70°C. By heating, it showed an unstable aggregate structure due to a 

disassociation of hydrogen bonding at higher temperatures. Therefore, in this 
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temperature range, the particle size of poly(HEAA) was about 80 nm. On the other hand, 

the particle size of PHET10–1 changed from about 115.0 nm to 140.0 nm in the process 

of forming the aggregate from the hydrophobic interaction of PTMC and its association 

through hydrogen bonding. In the case of colloid by forming graft polymer, the number 

of hydrophobic domain are scattered in colloid. Therefore, the particle size was 

increased by reorientation. This behavior indicated that graft copolymers as colloid gels 

were in swelled state. Additionally, the particle sizes reversibly increased and decreased 

to occur association-diassociation of physical cross-linking due to changes in 

temperature. The author considered that the physical cross-linking was dominant for the 

colloid gel association and disassociation. 
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Figure 2.4.  Particle size distribution of the PHET copolymers as determined by DLS 

measurement. 
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2.3.3 Evaluation of Graft Copolymer Aggregate by Fluorescence Measurements. 

The CAC and Kv values of the PHET copolymers were determined in aqueous 

media at different concentrations using fluorescence measurements, with pyrene as a 

hydrophobic fluorescent probe. The fluorescence spectrum of pyrene in solution is 

known to shift depending on the polarity of the surrounding environment [17, 20].  

Florescence intensity was high with increasing the polymer concentration in 

aqueous media (Figure 2.6). The maximum value in the excitation spectra (λex) of 

pyrene shifts from 333.5 to 336 nm, where it was considered that pyrene was 

incorporated into the hydrophobic PTMC domain. This shift in the excitation spectra 

was observed for all of the graft copolymers. The total intensities of the spectra varied 

depending on both the copolymer concentration and the total amount of hydrophobic 

PTMC segments.  

Figure 2.5.  Change in particle size over the temperature range 20 to 70˚C. 

Poly(HEAA): ○, PHET10–1: ○, PHET10–10: ○, PHET50–1: ○. 
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Figure 2.6.  Excitation spectra of pyrene (6.0 × 10
–7

 mol/L) as a function of polymer 

concentration (10
–5

–1 mg/mL) in aqueous solution. The samples were (a) PHET10–1, 

(b) PHET10–10, and (c) PHET50–1. 
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Figure 2.7 shows the fluorescence intensity ratio (I336/I333.5) in the pyrene excitation 

spectra at 373 nm versus the logarithm of the PHET concentration. Above the CAC, the 

fluorescence intensity increased exponentially, as the number of molecules of pyrene 

increased. So, the increase in signal due to the binding of pyrene becomes lager than the 

random error in determining the intensity of unbound component. On the other hand, 

below the CAC, absorption only occurred near the surface of the aggregates where the 

pyrene molecules cohered. The fluorescence intensity increased when pyrene followed 

by partitioning into the inner hydrophobic domain of aggregation [13]. This suggests 

that pyrene was solubilized in aggregation. The fluorescence intensity also increased by 

hydrophobic interaction between PTMC segment and pyreme with increasing PHET 

copolymer concentration. The increase in the intensity ratio indicated the onset of 

aggregate formation. Therefore, the CAC can be defined as the intersection of two 

straight lines in the low concentration range. The CAC values of PHET10–1, PHET10–

10, and PHET50–1 were estimated to be approximately 8.9 × 10
–2

, 3.2 × 10
–3

, and 2.2 × 

10
–3

 mg/mL, respectively (Table 2.2). The CAC of the graft copolymer decreased with 

increasing the chain length of PTMC and the macromonomer composition ratio. In the 

case of PHET10–1, the CAC had the lowest value among the copolymers, showing 

lower association forces. The repeating unit of TMC and the macromonomer 

composition both influenced the formation polymer colloids. In this case, the higher 

number of repeating units of TMC appears to be dominant; otherwise, a higher 

macromonomer composition would be necessary. The slope reached a plateau above 1.2 

of I336/I333.5 for PHET10–10 and PHET50–1 samples, indicating that the hydrophobic 

domain was saturated with incorporated pyrene. 
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To quantify the separation of pyrene into the hydrophobic domain during 

aggregation, Wilhelm et al. devised an equation to calculate the Kv value of the 

hydrophobic domain in graft copolymer aggregates [20]. The concentration of pyrene in 

the hydrophobic domain of the PHET copolymer was calculated using Equations (1)–

(4), where [Py]A and [Py]w represent the concentrations of pyrene in the aggregated and 

aqueous phase, respectively. The binding of pyrene to aggregation is assumed to result 

from the simple equilibrium between the aggregation phase of volume (VA) and the 

water phase of volume (Vw). The Kv value for pyrene was calculated from the ratio of 

the pyrene concentrations ([Py]A/[Py]w). In this approach, [Py]A/[Py]w can be corrected 

Figure 2.7.  Plots of I336/I333.5 (from the pyrene excitation spectra) versus log C, 

where C is the concentration of the graft copolymers. PHET10–1: ●, PHET10–10: 

●, and PHET50–1: ●. 
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to the volume ratio of each phase:  

which can be rewritten as 

 

[Py]A/[Py]w = Kv(VA/VW ) (1) 

 

Moreover, [Py]A/[Py]w can be written as 

 

[Py]A/[Py]w = Kvx(c – CAC)/1000ρ (2) 

 

where x is the weight fraction of the PTMC segment, c is the concentration of the graft 

copolymer, and 𝜌 is the density of the PTMC aggregation domain, which is assumed to 

be the value of bulk PTMC (1.01 g/cm
3 ≅ g/mL). 

 

[Py]A/[Py]w = (F – Fmin)/(Fmax – F) (3)  

 

which can be rewritten as 

 

Kv = slope × 1000ρ/x (4) 

 

where Fmin and Fmax correspond to the average magnitudes of the peak ratio in the 

region of high and low concentration ranges shown in Figure 2.8, respectively, and F is 

the fluorescence intensity ratio (I336/I333.5) in the intermediate concentration range of the 

conjugates [Equations (2) and (3)]. The slope was determined by a linear approximation 

and the Kv values were calculated using Equation (4). 
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Figure 2.8.  Plots of (F – Fmin)/(Fmax – F) versus concentration of graft 

copolymers. PHET10–1: ●, PHET10–10: ●, and PHET50–1: ●. 
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Table 2.2.  The CAC and Kv of PHET copolymers  
CAC (mg/mL) K v/10

4

PHET10–1 8.9 × 10
–2 2.0

PHET10–10 3.2 × 10
–3 8.0

PHET50–1 2.2 × 10
–3 9.8

Sample
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The fluorescence study using pyrene also reflected the polymer structure, including 

the grafting degree and PTMC chain length. PHET10–10 and PHET50–1 had higher 

slope, as calculated by Equation (3), by changing each polymer concentration. The Kv 

values of PHET10–1, PHET10–10 and PHET50–1 were estimated to be approximately 

2.0 × 10
–4

, 8.0 × 10
–4

, and 9.8 × 10
–4

 by Figure 2.8 and Equation (1)–(4). The Kv of 

PHET10–10 was four times as large as that of PHET10–1. The author concluded from 

these results that PTMC segments played a role in both molecular incorporation and 

cross-linking. Therefore, the Kv of PHET10–10 was not in agreement with the 

theoretical value. Table 2.2 summarized these results. The chain length of PTMC rather 

than the macromonomer composition ratio decreased the Kv values of graft copolymers. 

Therefore, the hydrophobic domain in PHET50–1 proved to have a more significant 

influence than in PHET10–10. 
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2.4 Conclusions 

Amphiphilic graft copolymers with homogeneous graft chain lengths of PTMC 

segments were prepared using macromonomer method. These copolymer associations 

formed core–shell structures in an aqueous solution. The particle size of the 

poly(HEAA–graft–PTMC) (PHET) aggregates in aqueous solution was about 30.7–

300.1 nm and was comparatively stable relative to changes in temperature. In particular, 

PHET10–1 and PHET10–10 have suitable particle sizes for common DDS. The CAC of 

the PHET copolymers were in the range of 2.0 × 10
–3

 to 8.9 × 10
–2

 mg/mL. The Kv 

values were dependent to the increase in TMC units. The author deduced that the 

particle size, CAC, and Kv values for the copolymers depended mostly on the chain 

length of the hydrophobic PTMC. The graft copolymer with a longer PTMC chain 

length underwent strong hydrophobic interactions, leading to an increase in the particle 

size and Kv. From these results, the function of the hydrophobic PTMC domains seemed 

to be slightly different according to the number of TMC repeating units. The author 

confirmed that the aggregates formed from the graft copolymers with PTMC domains 

may be used as potential drug delivery vehicles for loading hydrophobic molecules. 
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Chapter 3 

Characterization of Temperature-Responsive  

Graft Copolymer with Polycarbonate Oligo Segment 
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3.1 Introduction 

   Intelligent polymer colloids showing temperature and pH etc. responsiveness and 

increasing functionality have received much attention in biomedical and biomaterial 

fields [1–7]. A basic concept of preparing polymer colloids is the incorporation of 

amphiphilic properties into polymer chains. In the case of biomaterials, both 

biocompatibility and biodegradability are highly desirable properties. Aliphatic 

polyesters such as poly(L-lactic acid), poly(glycolic acid), and poly(amino acid) have 

these properties [8–12]. Therefore, these modified copolymers are widely investigated 

for functional biomaterial applications. 

Poly(N-isopropyl acrylamide) (poly(NIPAAm)) is functional polymer that is well 

known for its thermosensitive properties, coil-globule transition, and lower critical 

solution temperature (LCST) of 32°C. Poly(NIPAAm) and its copolymers are widely 

studied for drug delivery systems (DDS) and tissue engineering [2–4, 13]. Accordingly, 

this study aims to increase the functionality of poly(NIPAAm) (such as 

thermosensitivity and enhancement of graft copolymer stability) by adding 

poly(trimethylene carbonate) (PTMC) as polymer side chains. Therefore, 

poly(NIPAAm) was copolymerized with the previously discussed PHET polymer as the 

third monomer unit. The resulting polymer could show LCST and higher stability at 

temperatures below the LCST. 

   In this chapter, poly(NIPAAm–graft–PTMC) (PNT) and poly((N-hydroxyethyl 

acrylamide (HEAA)–co–NIPAAm)–graft–PTMC) (PHNT) were designed and 

synthesized using macromonomer method (Figure 3.1). Using this method, both the 

segment length and composition ratio of the graft chain can be easily modified. 

Poly(HEAA–graft–PTMC) (PHET) copolymer in Chapter 2 is changing in property 
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such as hydrophobic–hydrophilic balance by addition to the temperature-responsive 

functionality. This is particularly useful in controlling the solubility of the polymers in 

water. The author investigated the solution property of the polymer colloids by 

fluorescence measurements using pyrene and cetylpyridium chrolide. Furthermore, the 

temperature-responsive property of colloid was evaluated by UV–Vis spectroscopy and 

dynamic light scattering (DLS) at various temperatures. These polymer colloids could 

be potential materials for designing temperature-responsive molecular carriers. 
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Figure 3.1. Chemical structure of poly((HEAA–co–NIPAAm)–graft–PTMC) 

(PHNT). 

CH2 CH CH2

CO

NH

CH

H3C CH3

CH

CO

NH

CH2

CH2

O C

O

CH2CH2CH2O H

CH2 CH

CO

NH

CH2

b c

n

a

CH2

OH



49 

 

3.2 Experimental Section 

3.2.1 Materials 

N-Isopropyl acrylamide (NIPAAm) and HEAA were kindly supplied by KOHJIN 

Co., Ltd., Tokyo, Japan. Trimethylene carbonate (TMC) as a cyclic monomer was 

purchased from Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany. 

1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) as basic organic catalyst was obtained from 

Kanto Chemical Co., Ltd., Tokyo, Japan. Benzoic acid (Wako Pure Chemical Industries, 

Co., Ltd. Osaka, Japan) was used to ring-opening polymerization  (ROP). 

2,2′-azobis(isobutyronitrile) (AIBN) was used as an initiator for radical polymerization 

and was purchased from Tokyo Chemical Industry Co., Ltd, Tokyo, Japan. Pyrene was 

selected as a fluorescence probe and was purchased from Wako Pure Chemical 

Industries. Cetylpyridium chrolide (CPC) as quenching agent was purchased from Wako 

Pure Chemical Industries (Figure 3.2). Dichloromethane, N,N-dimethyl formamide 

(DMF), and all other organic solvents were used as received. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.  Chemical structure of CPC. 
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3.2.2 Synthesis of Hydrophobic Temperature-Responsive Graft Copolymers 

The HEAA–PTMC macromonomer was synthesized using previously reported 

procedure [14]. The author prepared the macromonomer with approximately 10 

repeating units of TMC. The DP of PTMC was calculated from the proton nuclear 

magnetic resonance (1H NMR; 500 MHz) spectrum in CDCl3. 

The author synthesized the novel temperature-responsive graft copolymer by radical 

polymerization. AIBN, NIPAAm, and the HEAA–PTMC macromonomer were 

dissolved in DMF, and polymerization was performed at 70°C with nitrogen gas 

bubbling for 24 h. Furthermore, an additional graft copolymer was synthesized using 

AIBN, HEAA, NIPAAm, and HEAA–PTMC macromonomer. The reaction mixture was 

added to dichloromethane/n-hexane (1:4 (v/v)), which is a poor solvent. The product 

was dried under reduced pressure and the resulting material was dissolved in DMF, then 

dialyzed for 48 h at room temperature using preswollen dialysis membrane 

(approximate molecular weight cut off = 3,500 Da) to remove any residual solvent. The 

obtained copolymer solution was freeze-dried. The refined copolymer was analyzed by 

1H NMR and gel permeation chromatography (GPC). 

 

3.2.3 Evaluation of Polymer Colloids at Lower Critical Solution Temperature 

  The LCST behavior of the polymers was determined by temperature variable UV–Vis 

spectrometer. The transmittance of each sample was measured at temperatures from 

20°C to 70°C. The measurements were performed at heating rate of 1.2°C/min and 2.0 

nm bandwidth. The change in particle size around the LCST was determined by 

dynamic light scattering (DLS) at various temperatures. The polymer concentration was 

1 mg/mL in water. 
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3.2.4 Determination of Critical Association Concentration 

   The critical association concentration (CAC) was determined by using pyrene as a 

hydrophobic fluorescence probe. First, pyrene was dissolved in tetrahydrofuran (THF) 

at a concentration of 1.2 × 10–3 mol/L. The pyrene solution was then added to a large 

amount of water. After mixing, the THF was removed by rotary evaporation at 40°C for 

2 h. The final concentration of pyrene was 6.0 × 10–7 mol/L [4, 15]. The copolymers 

were dissolved in the aqueous pyrene solution at various concentrations between 1.0 × 

10–3 and 1 mg/mL. The fluorescence spectra were recorded on fluorescence 

spectrophotometer. The emission and excitation spectra of pyrene were monitored at 

various temperatures. The measurements were taken with a 5.0 nm slit width and 300 

nm/min scan speed. 

 

3.2.5 Estimation of Aggregation Number by Quenching Method 

   The aggregation number (Nagg) of copolymer was determined by CPC [5–7]. Pyrene 

was dissolved in THF at a concentration of 1.0 × 10–3 mol/L. The pyrene solution was 

added to water and then mixed. The THF was removed by rotary evaporator at 40°C for 

2 h. Pyrene aqueous solution was adjusted at concentration of 1.0 × 10–6 mol/L. The 

copolymers were dissolved in the pyrene aqueous solution at various polymer 

concentrations of 0.1 mg/mL. CPC at various concentrations from 1.0 × 10–5 mol/L to 

8.0 × 10–5 mol/L was added into polymer solutions. The fluorescence spectra were 

recorded on fluorescence spectrophotometer. The emission spectra of pyrene were 

monitored at 25°C. The measurements were taken width and 500 nm/min scan speed. 
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3.3 Results and Discussion 

3.3.1 Synthesis of Temperature-Responsive Graft Copolymers 

The HEAA–PTMC macromonomer was prepared by previously reported method 

[14]. The number of repeating units of TMC was controlled at approximately 10 (Table 

3.1). Temperature-responsive graft copolymers having an oligo PTMC segment (PNT 

and PHNT) were synthesized by conventional radical polymerization. The resulting 

polymer was a colorless, viscose precipitate. Figure 3.3 shows the 1H NMR spectrum of 

PHNT in DMSO-d6. The composition ratio of macromonomer unit in the graft 

copolymer was calculated by comparing the integral value of the amide protons of 

NIPAAm and HEAA (7.1–7.4 ppm) and the methylene protons of PTMC (4.1 ppm). 

The composition ratio of the HEAA and NIPAAm units in PHNT was then compared to 

the integral value of the hydroxyl proton of HEAA (4.8 ppm) and the isopropyl protons 

of NIPAAm (1.0 ppm). 
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Figure 3.3.  1H NMR spectrum of PHNT copolymer in DMSO-d6. 
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3.3.2 Lower Critical Solution Temperature of the Temperature-Responsive Graft 

Copolymers 

   The LCST of the copolymers was determined by UV–Vis and DLS. Figure 3.4 

shows the transmittance (%T) versus temperature curves measured by UV–Vis 

spectroscopy. The LCST of the poly(NIPAAm) homopolymer was approximately 

32.0°C. The LCST of PNT was approximately 31.6°C with the introduction of the 

hydrophobic PTMC segment. Therefore, the incorporation of the hydrophobic 

macromonomer unit into PNT decreased the LCST in comparison to poly(NIPAAm). 

On the other hand, PHNT showed LCST of 43.0°C by a smooth phase transition. This 

was because the main chain of the copolymer, composed of NIPAAm units, was 

randomly substituted with hydrophilic HEAA units. Thus, the LCST of PHNT was 

higher than that of all hydrophobic chain, PNT. Poly(HEAA–co–NIPAAm) (PHN) 

showed LCST of approximately 53.0°C. The transmittance profile was slightly affected 

by increasing the amount of HEAA. The change in the composition ratio of the 

NIPAAm units influenced the LCST. The author concluded that the LCST was 

controlled by adding the composition of HEAA units. 
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Figure 3.4.  Transmittance versus temperature curves from PNT: ○, PHNT: ○, 

and PHN: ○. The aqueous solution was heated and monitored by UV–Vis 

spectroscopy. The polymer concentration was 1.0 mg/mL. 
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Figure 3.5.  Particle size versus temperature curves from PNT: ○, PHNT: ○, and 

PHN: ○. The aqueous solution was heated and monitored by UV–Vis spectroscopy. 

The polymer concentration was 1.0 mg/mL. 
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DLS measurements were performed at various temperatures. The particle size 

increased with temperature as shown in Figure 3.5. Each particle size was single peak. 

At 25.0°C, the particle sizes of PNT, PHNT, and PHN were 57.5, 26.2, and 19.4 nm, 

respectively. The author inferred that the HEAA units decreased the particle size due to 

increasing cohesion forces resulting from hydrogen bonding in the particles. On the 

other hand, the hydrophobic interactions induced by the introduction of the PTMC 

segments caused intermolecular aggregation. At the LCST, these copolymers clearly 

showed that the aggregation was caused by the hydrophobic effects of the 

poly(NIPAAm) unit. Therefore, the particle sizes of PNT, PHNT, and PHN increased to 

4,500, 491.2, and 858.7 nm, respectively. The PNT colloids with hydrophobic segments 

decreased in size and formed a large hydrophobic core due to aggregation of the 

NIPAAm units. This suggests that PNT copolymer fragmentation and reorganization 

occurred among the copolymers. After reaching the LCST, the PHNT copolymer formed 

similar aggregates among the copolymers; however, the hydrophilic HEAA units 

formed shell structure. Furthermore, heating lead to the breaking of hydrogen bonds 

between the acrylamide derivatives in the PHNT colloids, inducing copolymer 

reorganization. Therefore, the particle size of PHNT gradually decreased from 

approximately 491.2 to 265.3 nm. The PHN colloid without hydrophobic PTMC 

segments had a higher LCST than the other copolymers. Similar to PHNT, the particle 

size of PHN decreased from approximately 858.7 to 759.2 nm. Above the LCST, 

poly(NIPAAm) changed the hydrophobic properties of the copolymers and formed a 

stable hydrophobic core in the copolymer resulting in drastically increased particle size. 

The results suggest that the introduction of the PTMC segment and HEAA units 

prevented the formation of aggregates of more than 1000 nm in diameter among the 
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polymer colloids. 

 

3.3.3 Characterization of Amphiphilic Temperature-Responsive Graft Copolymers 

The CAC of the aqueous phase copolymers at various concentrations was 

determined by using pyrene as the hydrophobic fluorescence probe. The fluorescence 

spectra of the pyrene solutions were shifted by the polarity change. The excitation 

spectra of pyrene at 333 nm and 336 nm were recorded, and their ratio was plotted. 

Figure 3.6 shows the fluorescence intensity ratio (I336/I333) of pyrene excitation spectra 

versus the logarithm of copolymer concentration. The I336/I333 values represent the 

hydrophobicity of the copolymers. At high concentrations the I336/I333 value of PNT and 

PHNT, increased with concentration. This suggested that pyrene molecules were 

incorporated into the hydrophobic PTMC domain in the polymer aggregates and the 

CAC values were estimated. The intersection of the two straight lines in the low 

concentration range indicated to the CAC. The CAC values of PNT and PHNT were 

determined to be approximately 3.2 × 10–2 and 3.8 × 10–2 mg/mL, respectively. The 

CAC of PNT and PHNT with different main chains were almost identical. This 

indicated that NIPAAm and HEAA when used as the hydrophilic main chain did not 

affect the CAC at room temperature. Therefore, PHN as hydrophilic–hydrophilic 

copolymer was non-existent at the CAC. 

When change in temperature at less than CAC values of each copolymer solution 

(2.5 × 10–2 mg/mL), the I336/I333 values of PNT copolymer was drastically increased, but 

PHNT and PHN was gently increased (Figure 3.6). Approaching the LCST region, the 

I336/I333 value of PNT and PHNT increased and then reached a plateau (similar to Figure 

3.6). This result indicated that copolymers reached the critical association temperature. 



59 

 

On the other hand, the I336/I333 values of the PHN copolymer did not plateau with 

temperature at 2.5 × 10–2 mg/mL. The author inferred that copolymer fragments 

gradually associated and formed hydrophobic domain comprising poly(NIPAAm) with 

increasing temperature. 

 

 

 

 

 

 

3.3.4 Estimation of Aggregation Number by Quenching Method 

The Nagg was estimated by fluorescence quenching method using CPC and pyrene. 

This method is analyzed fluorescence decay curve by the fluorescence measurement and 
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Figure 3.6.  Plots of I336/I333 (from the pyrene excitation spectra) versus log C for 

the formation of polymer aggregates of PNT: ●, PHNT: ●, and PHN: ●. 
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has the advantage of unaffected between aggregation interactions. This experiment was 

performed on polymer solutions of concentration 0.1 mg/mL, PNT: 3.6 × 10–5 and 

PHNT: 4.3 × 10–5 mol/L. The fluorescence spectra were monitored at various 

concentration of CPC quencher (Figure 3.7). These emission intensities of spectral 

curves decreased as more increasing as quencher concentration. The modified Stern–

Volmer plots for the copolymers are presents. Increasing CPC quencher, the emission 

intensity of pyrene decreased and the plots of the logarithm of the emission intensity 

ratio of pyrene in the absence (I0) and presence (I) of CPC quencher (lnI0/I) was high. 

These plots are liner, thus, the author saw that the CPC in polymer colloid was served as 

the predominant host for pyrene. Table 3.2 summarized calculation results of Stern–

Volmer equation. The Nagg is calculated and estimated by Stern–Volmer equation. The 

slope of the plots in Figure 3.8 is related to Nagg follow: 

 

ln (I0/I) = [CPC]/[Aggregation] 

 

[Aggregation] = [Polymer] − [CAC]/[𝑁agg] 

    

where [CPC], [Aggregation], and [Polymer] represent each concentrations. [CAC] 

represents the critical association concentration in Figure 3.6. The Nagg was estimated by 

equation and those of PNT and PHNT were approximately 2.3 and 3.7, respectively. 

The author thought that hydrophobic interaction by PTMC segments and hydrogen 

bonding of NIPAAm units and HEAA were driving force for assembly. 
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Figure 3.8.  Plots of ln(I0/I) versus concentration of CPC. Concentration of 

PNT and PHNT were 3.6 × 10–6 and 4.3 × 10–6 mol/L, respectively. PNT: ○ and 

PHNT: ○. 

Figure 3.7.  Fluorescence spectra of pyrene (1 × 10–6 mol/L) as a function of CPC 

concentration (1 × 10–4 
– 8 × 10–4 

mol/L) in the presence of polymer solution of (a) 

PNT (3.6 × 10–6 mol/L; 0.1 mg/mL) and (b) PHNT (4.3 × 10–6 mol/L; 0.1 mg/mL). 
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  Table 3.2.  Calculated results of Nagg 
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3.4 Conclusions 

Graft copolymers with temperature-responsive function were synthesized by 

conventional two-step polymerization and their structure was confirmed by 1H NMR. 

By introducing NIPAAm units into the copolymer, the previously reported PHET 

copolymers possessed a thermal response. In this study, the author investigated the 

LCST and function of molecular incorporation by fluorescence probe techniques. By the 

introducing HEAA units into PNT, PHNT showed a LCST at 43.1°C and a decreased 

particle size compared to unmodified PNT. Above the LCST, the HEAA units of the 

copolymer formed a shell structure in aqueous media and reorganized into a stable 

colloid. The CAC values of PNT and PHNT were between 3.0 × 10–2 to 4.0 × 10–2 

mg/mL and these aggregations was composed of the number of from approximately 10 

to 20 copolymers. Furthermore, at 2.5 × 10–2 mg/mL (near the CAC), PNT and PHNT 

are gradually formed stable colloids at the LCST. From these results, the author expects 

that PHNT colloids having LCST and hydrophobic domains show potential applications 

environmentally responsive carriers. 
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Chapter 4 

Synthesis and Evaluation of Surface Property of Amphiphilic 

Graft Copolymer Containing Different Oligo Segments 
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4.1 Introduction 

   Polymer membranes that have surface properties such as antifouling behavior are 

widely researched and applied to many material fields from marine to biomedical 

industries [1–4]. In the biomaterial field, however, there are growing concerns about the 

inflammation caused by protein adsorption between materials within the body. In such 

matters, molecular design is important for development, and as a result, functional 

materials such as polymers with excellent surface properties are the focus of many 

researchers, where the polymer’s contact angles with water and the water structure in 

hydration polymers have been reported to be important for biomaterial [5–7]. 

Amphiphilic polymers with hydrophobic–hydrophilic properties are being actively 

researched to develop a method of suppressing non-specific protein adsorption [4, 7, 8]. 

As the antithrombogenic polymer, poly(ethylene glycol) (PEG) and zwitterionic 

polymers, such as poly(2-methacryloyloxyethyl phosphorylcholine) and 

poly(sulfobetaine methacrylate), are the most widely studied in the biomedical field. It 

is thought that the good hydration state, the exchange of bound water on the polymer 

surface in body to inducing electrostatic interaction through zwitterionic polymer and to 

forming hydrogen bonding by water molecule and ether oxygen atoms of PEG [3, 7–10]. 

Moreover, the solubility of copolymers in water increases upon increases in the number 

of ethylene glycol units incorporated into the polymer, even as the molecular weight 

increases. The control of amphiphilic polymer microstructures is also actively 

investigated in the field of tissue engineering. The self-assembled honeycomb structure 

of such polymers is suitable for use in cell cultures due to the resulting fitted membrane 

hardness and hydrogen bonding ability [11, 12]. Therefore, the design of functional 

polymer-based materials is required to control their wettability in response to their 
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external environment. In other studies, control of the friction and adhesion at the 

interface between polymers, polymer materials incorporating segments with different 

properties were reported [13–15]. These polymers were able to demonstrate significant 

switching of their surface responsive behaviors and wettability upon the introduction of 

external stimuli, such as immersion in solvents of varying polarities and changes in 

temperature. 

Many reports have been published about polymer material characterizations of 

poly(ethylene glycol) monomethyl ether (mPEG) and poly(L-lactic acid) (PLA) 

amphiphilic diblock copolymer [16–19]. The author has reported amphiphilic graft 

copolymer composed of mPEG and poly(trimethylene carbonate) (PTMC) instead of 

PLA. As polymer design, the author focused on and selected biodegradable PTMC and 

biocompatible mPEG. Block copolymers composed of PTMC segments have been 

achieved and reported to rapidly modify their surface wettability under a wetting 

environment [20]. Therefore, the author designed and synthesized amphiphilic graft 

copolymers containing PTMC oligo segments and oligo(ethylene glycol) segments 

using a macromonomer method. Generally, the amorphous PTMC segment has high 

molecular mobility and PTMC block copolymer has stimulus-responsive upon changes 

to its external environment. The biodegradable polycarbonate, however, such as high 

molecular weight PTMC, could be susceptible to hydrolysis in vivo [20–22], which 

could lead to reduced function of the material. On the other hand, PTMC with a degree 

of polymerization (DP) between 10 and 50, does not undergo appreciable degradation in 

the presence of lipase enzyme [23, 24]. An oligo PEG segment can be incorporated into 

graft copolymer so that it segregates to the surface of the material. Hydrophilic and 

biocompatible PEG on the surface of polymeric materials decreases the hydrophobic 
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interactions of the materials and this property is important for their use at biointerfaces. 

As the main chain in graft copolymers, the author selected two types of monomers 

containing different functional groups, 2-hydroxyethyl acrylate (HEA) and 

2-methoxyethyl acrylate (MEA). The chemical structure of HEA comprises a hydroxyl 

and ester group, while that of MEA has an ester and methoxy group, and poly(MEA) 

exhibits good biocompatibility and hydrophobicity [6–8, 25]. 

In this study, the author reports the synthesis of novel copolymers and investigates 

their surface responsive properties, such as surface morphology and wettability. The 

author synthesized PTMC macromonomer, and then prepared further ternary graft 

copolymers. The hydrophobic–hydrophilic balance of these materials was controlled by 

the composition ratio of PTMC oligo and mPEG oligo segments. The polymer 

membrane was studied in terms of its surface morphology and roughness. These 

copolymers were evaluated using differential scanning calorimetry and contact angle 

measurements to estimate their phase separation and surface responsiveness towards 

surface enrichment due to the mobility of the polymer segments. 
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4.2 Experimental Section 

4.2.1 Materials 

2-Methoxyethyl acrylate (MEA), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 

benzoic acid, and 2,2’-azobis(isobutyronitrile) (AIBN) were purchased from Wako Pure 

Chemical Industries, Co., Ltd., Osaka, Japan. The hydrophilic macromonomer, 

poly(ethylene glycol) methyl ether methacrylate (mPEGMA: Mn = 950 and 

polymerization degree of ethylene glycol units: 19.5), was purchased from 

Sigma-Aldrich Corp., St. Louis, MO, USA. Trimethylene carbonate (TMC) and 

2-hydroxyethyl acrylate (HEA) were purchased from Tokyo Chemical Industry Co., Ltd, 

Tokyo, Japan. Dichloromethane, N,N-dimethyl formamide (DMF), and all other organic 

solvents were used as received. 

 

4.2.2 Synthesis of HEA–PTMC Macromonomer 

Conventional ring-opening polymerization (ROP) of TMC monomer using HEA 

initiator was initially performed in order to obtain the HEA–PTMC macromonomer 

according to our previously reported procedure [26]. The synthesis of the HEA–PTMC 

macromonomer with 10 units of TMC proceeded as follows: HEA (105.7 μL, 1.0 mmol) 

and TMC (1.02 g, 10 mmol) were dissolved in dichloromethane (CH2Cl2) (10 mL). A 

solution of DBU (152.2 μL, 1.0 mmol) in CH2Cl2 was then added to the flask, and the 

solution was mixed. The ROP was carried out under a nitrogen atmosphere at room 

temperature for 24 h. Benzoic acid was added to the reaction mixture in order to 

inactivate the terminal hydroxyl group and terminate the reaction. The obtained solution 

was poured into a large amount of either a 2-propanol/water (2:1) mixture or undiluted 

2-propanol in order to precipitate the desired macromonomer product. The viscous 
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product was dried under reduced pressure to give the product in stable yield. The degree 

of polymerization (DP) was calculated using proton nuclear magnetic resonance (
1
H 

NMR) spectroscopy. The synthesized HEA–PTMC macromonomers contained 10 or 20 

TMC units. 
1
H NMR (300 MHz, CDCl3) δ: 2.1 (m, 2H, –CH2–CH2–CH2–), 3.6 (q, 2H, 

–CH2–CH2–O–), 3.7 (t, 2H, –C(=O)–O–CH2–CH2–), 4.2 (t, 4H, –CH2–CH2–CH2–), 5.8 

(d, 1H, CH2=CH–C(=O)–O–), 6.1 (q, 1H, H–CH=CH–), and 6.4 ppm (d, 1H, H–

CH=CH–). 

 

4.2.3 Synthesis of Poly(HEA–graft–HEA–PTMC–co–mPEGMA) Copolymer 

To synthesize poly(HEA–graft–HEA–PTMC–co–mPEGMA) (PHPT) copolymer 

(Figure 4.1(a)), radical polymerization was carried out using AIBN, HEA, HEA–PTMC, 

and mPEGMA. The reagents were each dissolved in DMF, and their solutions combined. 

The mixture was refluxed at 70 °C for 24 h. The crude product was poured into a large 

volume of a hexane/2-propanol (2:1) mixture to precipitate the resulting copolymer, 

which was separated from the supernatant by decantation. The copolymer was dried 

under reduced pressure to give a colorless and sticky product. Chemical structures were 

confirmed by 
1
H NMR spectroscopic analysis and the molecular weight was determined 

by gel permeation chromatography (GPC).
 1

H NMR (300 MHz, DMSO-d6) δ: 1.2 (br, 

3H, –CH2–C(CH3)–C(=O)–O–, 1.2–1.9 (br, 2H, –CH2–CH–C(=O)–O– and 2H, –CH2–

C(CH3)–C(=O)–O–, 1.9 (m, 2H, –C(=O)–O–CH2–CH2–CH2–O–), 2.2 (1H, –CH2–CH–

C(=O)–O–), 3.2 (s, 3H, –CH2–CH2–O–CH3), 3.4 (m, 2H,– C(=O)–O–CH2–CH2–O–

CO–)3.5 (s, 4H, –O–CH2–CH2–O–), 3.6 (m, 2H,–C(=O)–O–CH2–CH2–OH), 3.9 (2H,–

C(=O)–O–CH2–CH2–O–), 4.1 (m, 4H, –C(=O)–O–CH2–CH2–CH2–O–), and 4.6–4.8 (br, 

1H, –O–CH2–CH2–OH) [27, 28]. 
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4.2.4 Synthesis of Poly(MEA–co–HEA–PTMC–co–mPEGMA) Copolymer 

To synthesize poly(MEA–graft–HEA–PTMC–co–mPEGMA) (PMPT) copolymer 

(Figure 4.1(b)), radical polymerization was carried out using AIBN, MEA, HEA–PTMC, 

and mPEGMA. The reagents were each dissolved in DMF, and their solutions combined. 

The mixture was refluxed at 70°C for 24 h. The crude product was poured into a large 

volume of a hexane/2-propanol (2:1) mixture to precipitate the resulting copolymer, 

which was separated from the supernatant by decantation. The copolymer was dried 

under reduced pressure to give a colorless and sticky product. Chemical structures were 

confirmed by 
1
H NMR spectroscopic analysis and the molecular weight was determined 

by GPC.
 1

H NMR (300 MHz, DMSO-d6) δ: 1.0 (br, 3H, –CH2–C(CH3)–C(=O)–O–, 

1.2–1.9 (br, 2H, –CH2–CH–C(=O)–O– and br, 2H, –CH2–C(CH3)–C(=O)–O–, 1.9 (m, 

2H, –C(=O)–O–CH2–CH2–CH2–O–), 2.2 (1H, –CH2–CH–C(=O)–O–), 3.2 (s, 3H, –

CH2–CH2–O–CH3), 3.4 (m, 2H,–O–CH2–CH2–O–C(=O)–O– and 3.5 (s, 4H, –O–CH2–

CH2–O–), s, 2H,–C(=O)–O–CH2–CH2–O–), and 4.1 (s, 2H, –C(=O)–O– CH2–CH2–O– 

and m, 4H, –C(=O)–O–CH2–CH2–CH2–O–) [27, 28].  
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4.2.5 Thermal Analysis by Differential Scanning Calorimetry Measurement 

The thermal properties of the graft copolymers were investigated using differential 

scanning calorimetry (DSC). DSC measurements were performed using a heat–cool–

heat cycle. The glass transition temperatures (Tg) of the graft copolymers were recorded 

from −50 to 150°C at a scanning rate of 10°C/min. Liquid nitrogen was used to cool the 

sample as required at the lower temperatures. 

 

Figure 4.1.  Chemical structures of (a) poly(HEA–graft–HEA–PTMC–co–mPEGMA) (PHPT) 

and (b) poly(MEA–co–HEA–PTMC–co–mPEGMA) (PMPT). 
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4.2.6 Observation of Surface Morphology 

   A glass substrate was coated with polymer dissolved in acetone. The concentration 

of polymer solution was 1 w/v%. The coating of the polymer on the substrate was 

achieved using a spin coater (rotation speed of 3000 rpm/min for 60 s), then the 

polymer-coated substrates were dried under reduced pressure. The author observed the 

stored polymer-coated glass substrate in dry state. For study by scanning electron 

microscopy (SEM), the glass substrate was fixed using carbon tape on the sample stage, 

then electro-conductive paste (DOTITE; Fujikura Kasei Co., Ltd., Tochigi, Japan) was 

spotted onto the corner of the sample. All samples were sputter-coated with platinum 

prior to observation. The accelerating voltage set at 2.0 kV. To observed surface 

roughness, atomic force microscopy AFM measurements were performed immediately 

at room temperature in air. The scan size measured was 5 × 5 μm
2
. For the surface 

response experiments, the samples were immersed in solvent, such as water, ethanol, or 

hexane, for 2 h, and then dried by blowing air over the sample. 

 

4.2.7 Surface Properties Evaluated by Static Contact Angle Measurement 

The copolymers were dissolved in acetone at a concentration of 1 w/v%. The 

solution was coated onto a glass substrate using a spin coater (rotation speed: 3000 rpm, 

time: 60 s). After drying under reduced pressure overnight, the static contact angle was 

measured. The substrate was treated with several solvents, such as water, ethanol, and 

hexane, for 2 h. The contact angle of the immersed substrate was then measured after 

drying by nitrogen gas flow. All measurements were taken at a temperature of 25 ± 

0.5 °C and humidity of 35–45%. 
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4.3 Results and Discussion 

4.3.1 Synthesis of Amphiphilic Graft Copolymer Having Different Oligo Segment  

The HEA–PTMC copolymers were synthesized using a conventional ROP technique. 

Two polymerization conditions were employed, where the feed ratios of [TMC]/[HEA] 

were 10 and 20, and the DP of PTMC, calculated by 
1
H NMR spectroscopy, was 

approximately 10 and 20, respectively. Figure 4.2 shows the 
1
H NMR spectrum of 

HEA–PTMC10 [26], where the integral ratios of the vinyl proton (5.8 ppm) of HEA 

with respect to the methylene protons (2.1 ppm) of PTMC were compared.  
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Figure 4.2.  
1
H NMR spectrum of HEA–PTMC10 macromonomer in CDCl3. 
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The amphiphilic graft copolymers, PHPT and PMPT, were synthesized by a free 

radical polymerization method over 24 h. Figure 4.3 shows the 
1
H NMR spectra of the 

PHPT and PMPT copolymers. Table 4.1 summarizes the synthetic condition and results 

utilized and obtained in this work. The naming convention used is based on the acronym 

P‘M’PTn–b, where ‘M’ represents the monomer incorporated (H = HEA and M = 

MEA), ‘b’ describes the PTMC macromonomer composition, and ‘n’ represents the DP 

of PTMC. For example, PHPT10−2 refers to a graft copolymer with a poly(HEA) main 

chain, DP of PTMC of 10 and macromonomer composition feed ratio of 2 mol%. The 

objective copolymers were obtained, but the polymer yield decreased from 

approximately 90 to 40% with increases in the feed ratio of the macromonomer 

composition. The polymer composition ratios were calculated using 
1
H NMR 

spectroscopy in DMSO-d6 by comparing the integral ratios of the HEA protons to those 

of PTMC and mPEGMA. These results indicated that the polymer composition was 

clearly dependent upon the monomer composition in the feed. The average molecular 

weight distributions (Mw/Mn) were evaluated by GPC measurements. Wide distributions 

were observed in DMF with increasing macromonomer composition, and a Tyndall 

phenomenon could be confirmed. The author hypothesize that the hydrophobic 

interactions between PTMC molecules resulted in the spontaneous formation of 

aggregates in DMF, therefore, the estimated molecular weights were larger than 

expected. 
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Figure 4.3.  
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H NMR spectra of (a) PHPT and (b) PMPT in DMSO-d6. 
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4.3.2 Thermal Analysis of Amphiphilic Graft Copolymers 

   Glass transition temperatures (Tg) were estimated from DSC thermograms. The 

copolymer samples were heated from 20–150°C prior to DSC measurement, and 

recorded at 10°C/min over the temperature over the temperature range of –100 to 150°C. 

The Tg of poly(HEA) and poly(MEA) were recorded at –21.0 and –42.7°C, respectively. 

It is well known that PTMC is an amorphous polymer, and therefore, the Tg process was 

observed at temperatures below room temperature. In addition, PEG is known to induce 

semi-crystallization, and the Tg of PEG is dependent on its molecular weight [29–31]. 

For graft copolymers having PTMC segments, the DSC curve attributed to Tg was 

observed across the range of –49 to –29°C (Table 4.1 and Figure 4.4). These results 

were corresponded with previously reported literature results [29, 32, 33]. The Tg was 

therefore not dependent on the segment length and composition ratio of the PTMC 

macromonomer. In a section of the copolymer, the Tg of polymer backbone (poly(HEA) 

and poly(MEA)), PTMC, and mPEGMA were not individually detected to show 

compatibility (Figure 4.4). From these results, the DSC data suggested that PTMC had 

high molecular mobility. 
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(c) PMP 

Figure 4.4.  DSC thermograms of (a) PHPT10–5, (b) poly(MEA), (c) PMP, and 

(d) PMPT10–5. 
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4.3.3 SEM Observation of Polymer Thin Membrane 

   SEM studies were performed to investigate the homogeneity of the polymer 

membrane by spin coating. Membrane samples for analysis were prepared using a spin 

coating method to deposit an acetone solution of the polymer onto a glass substrate. 

Figure 4.5 shows SEM images of PHPT20–5 and PMPT20–5. The morphologies of the 

polymer membrane were not related in the monomer and macromonomer composition 

ratio. The author hypothesized that the polymer coated these glass slides 

homogeneously, so therefore the amount of polymer aggregation was low. 

 

 

 

Figure 4.5.  SEM images of (a) PHP, (b) PMP, (c) PHPT20–5, and (d) PMPT20–

5. (Scale bar: 5.0 μm) 

(a) PHP (b) PMP 

(c) PHPT20–5 (d) PMPT20–5 

 ×2000     : 5.0 μm 
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3.4. Evaluation of Surface Characterization by Static Contact Angle Measurement 

   The surface wettability of the graft copolymers was investigated by measuring their 

static contact angles with water droplets under various conditions, including dry, wet, 

and after immersion in different polar solvents. The contact angle of the water droplet 

on the polymer membrane was measured over a time period of 60 s. At polymer 

concentrations of 1 w/v%, poly(HEA–co–mPEGMA) (PHP), PHPT10–2, PHPT10–5, 

PHPT10–10, PHPT20–2, poly(MEA–co–mPEGMA) (PMP), PMPT10–2, and 

PMPT10–5 were all soluble in water (Table 4.1). The static contact angle of an 

acetone-coated glass substrate (control sample) ranged from 37.6° to 35.7° over 60 s. 

The molecular orientation of the amphiphilic copolymer composed of hydrophilic 

and hydrophobic segments was oriented in order to minimize the interfacial free energy 

of the water–polymer interface. In this study, the wettability of the polymer-coated 

substrate changes from hydrophobic to more hydrophilic. Figure 4.7 and Figure 4.8 

show the contact angles of polymer-coated glass substrates versus time in dry 

conditions (stored under reduced pressure). In Figure 4.7(a), the contact angle of 

PHPT10–2 ranged from 24.9° to 21.8° over 60 s. On the other hand, the contact angle of 

the polymer membrane increased upon the introduction of a PTMC segment. 

Furthermore, this change in wettability was dependent on the composition ratio of 

PTMC segment. In PHPT20–2, the initial contact angle was 28.3°, and it reduced to 

21.0° after 10 s. The contact angle of PHPT10–5 and PHPT20–5, however, decreased 

from 45.0° to 34.0° over 60 s. A surface segregation phenomenon was observed for 

PHPT10–10 and PHPT20–10, but the changes in contact angles were low, with changes 

of 54.1° to 49.1° and of 53.5° to 48.6° observed, respectively. Surface enrichment of the 

co-polymer with PEG and HEA units was suppressed by increases in the amount of 
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hydrophobic interactions, because the composition ratio of the PTMC macromonomer 

was increased. When the polymer membrane was in contact with water, hydrophilic 

segments such as PEG and poly(HEA) rapidly moved to the outermost surface of the 

polymer membrane. Figure 4.8(a) shows the changes in contact angles observed upon 

introducing poly(HEA) as the main chain component of the polymer. The contact angles 

of polymers incorporating poly(HEA) and PHP showed contact angles in the range of 

44.4°–42.0° and 14.4°–10.7°, respectively. The contact angle of PHT20–5 with a PTMC 

segment exhibited a very rapid change from 47.0° to 36.2°. 

In the case of the PMPT polymer, the polymer-coated substrates immediately 

exhibited surface responsive behaviors (Figure 4.7(b)). This behavior depended on the 

length of the PTMC segment incorporated into the polymer. In PMPT10–2 and 

PMPT20–2, the contact angle changed from 29.7° to 17.4° and from 26.9° to 15.7°, 

respectively. The contact angle of PMPT10–5 and PMPT20–5 ranged from 44.8° to 

23.3° and from 47.7° to 20.5°, respectively. However, PMPT10–10 and PMPT20–10 

showed different behaviors, where the contact angle of PMPT20–10 (from 53.0° to 

26.7°) was lower than that of PMPT10–10 (from 59.9° to 40.9°) over 60 s. From these 

results, the author suspects that the molecular mobility of the PTMC segment in 

PMPT20–10 is high and the mPEG segment was aggregated on the polymer surface. In 

the PMPT-coated surface, the water droplet initially spread faster in all of the samples 

studied (Figure 4.7(c)). Figure 4.8(b) shows the contact angles of the poly(MEA) 

copolymers. The contact angles of the polymers with MEA backbones decreased in the 

initial stages of measurements, where the changes in the contact angles of poly(MEA), 

PMP, and PMT20–5 were 31.9°–24.8°, 17.7°–12.7°, and 47.7°–38.4°, respectively. 

Upon introducing oligo PTMC and mPEG segments, fast surface responses were 
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achieved, and large changes in the contact angles were observed within only a few 

seconds. Moreover, by introducing a hydrophobic PTMC segment into the poly(MEA) 

copolymer, the change in contact angle was much larger than for that of PHPT. Upon 

hydration with a water droplet, PTMC segments were immediately shielded from the 

water interface as PTMC migrated into the polymer, and mPEG segments were 

concentrated to form a PEG layer at the outermost surface [34]. Therefore, the surface 

of copolymer containing PTMC and mPEG segments rapidly changed and became more 

hydrophilicity. 
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Figure 4.7.  Static contact angles of (a) PHPT and (b) PMPT on a glass 

substrate. (c) A water droplet images on polymer membrane.  

60 sec 

(c) PMPT10–10 
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Figure 4.8.  Static contact angles of (a) poly(HEA) copolymers and (b) 

poly(MEA) copolymers on a glass substrate. 
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Figure 4.9 shows the AFM images, and surface morphologies of the poly(HEA) and 

poly(MEA) copolymers in air. The surface roughness was different for each polymer 

system. In the case of poly(HEA), the surface height was in the range of 0.81–12.58 nm 

and the morphology was flat (Figure 4.9(a)). The author thought that the membrane do 

not enough prepared of poly(HEA)-coated substrate. The contact angle of the 

hydrophilic poly(HEA) was higher than that of hydrophobic poly(MEA). The height of 

PHPT20–5 containing PTMC and mPEG segment was observed to be between 49.54 to 

105.49 nm, and the surface was rough (Figure 4.9(b)). The rough surface of this 

polymer-coated substrate expressed fast surface enrichment property. Figure 4.9(c)–(f) 

shows the surface roughness of poly(MEA) copolymers by AFM measurement. The 

surfaces obtained had homogenous heights in each sample, where that of poly(MEA), 

PMP, PMT20–5, and PMPT20–5 were approximately 17.89–39.93 nm, 12.35–28.33 nm, 

23.25–53.25 nm, and 10.84–32.11 nm, respectively. It was hypothesized that the 

changes in contact angles of poly(MEA) copolymers were not dependent on their 

surface roughness and morphologies. The author thought that the polymer surface was 

formed the random morphology by composition of each monomers and 

macromonomers. 
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Figure 4.9.  AFM images of the surface roughness and surface height of (a) 

poly(HEA), (b) PHPT20–5, (c) poly(MEA), (d) PMP, (e) PMT20–5, and (f) 

PMPT20–5 (Scan area: 5.0 × 5.0 μm
2
).  

(f) PMPT20–5 

(c) Poly(MEA) (d) PMP 

(e) PMT20–5 

(b) PHPT20–5 (a) Poly(HEA) 
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To investigate the environmental responsiveness of the polymer surfaces, the 

polymer-coated substrates were immersed in several different solvents, including water, 

ethanol, and hexane. The wet condition was measured the contact angle by immersed 

into water and the contact angle was immediately measured after subjecting the surface 

to a flow of nitrogen gas for a few seconds. Non-coated glass substrates were immersed 

into ethanol or hexane for 2 h, and the wettability measured after this process did not 

changed over 60 s. The contact angles for these control surfaces treated with water, 

ethanol, and hexane were approximately 34.6°–31.6°, 31.9°–31.5°, and 51.7°–48.8°, 

respectively. Table 4.2 summarizes change in the contact angle in various conditions for 2 h. 

When the poly(HEA) and poly(MEA) coated substrate was immersed into hexane, the contact 

angle rapidly decreased above approximately 10°. In the case of immersed into ethanol and 

hexane, the contact angle of PHP and PMP did not change. The initial contact angle of 

homopolymer and copolymer introducing mPEG segment changed in depend on immersed 

solvent polarity. On the other hand, the initial contact angle of PHT20–5, PHPT20–5, PMT20–5, 

and PMPT20–5 introducing PTMC was recovered to hydrophobicity by the nitrogen gas flow, 

and then that of the copolymers changed in the contact angle for 60 s. The contact angle was 

drastically decreased by introducing mPEG segment content in the PHT20–5 and PMT20–5. 

Figure 4.10 shows the contact angles of PHPT20–5 and PMPT20–5 treated with various 

solvents for 2 h. When these substrates were immersed in water, the contact angle 

changed quickly from 51.9° to 26.8° over 60 s (Figure 4.10(a)). The sample immersed 

into ethanol maintained its initial contact angle, with values in the range of 50.8° and 

41.8° over 60 s. The contact angle of PHPT20–5 treated with hexane started at 47.2° 

and decreased to 37.4°. These results demonstrate the rapid reorientation of PTMC 

segments on the polymer surface under nitrogen gas flow, and the contact angle 
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changing as the surface becomes hydrophilic upon contact with the water droplet for 

only a few seconds. In Figure 4.10(b), it can be seen the contact angle value recovered 

to what was observed under dry conditions. The contact angle of the PMPT20–5 

polymer-coated substrate changed from 60.2° to 25.1° even after immersion in water, so 

the contact angle was immediately shifted to the hydrophobic side chain. In the case of 

immersion into ethanol and hexane, the contact angle recovered to 65.4° and 58.7°, and 

then decreased to 34.7° and 37.6°, respectively. These results indicated that the 

hydrophobic moieties of the copolymers PHPT20–5 and PMPT20–5 rapidly 

concentrated on the surface of the polymer. 

 

 

 

 

 

 

 

 

Table 4.2.  Change in the static contact angles in various conditions for 60 s 
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Figure 4.10.  Static contact angles of (a) PHPT20–5 and (b) PMPT20–5 on a 

glass substrate. The samples were immersed into water (WET), ethanol, and 

hexane for 2 h, and then the contact angle was measured after exposure to a flow 

of nitrogen gas. 
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Figure 4.11–13 show AFM images of poly(MEA) copolymer-coated substrates 

treated by several solvents for 2 h. The surface roughness of poly(MEA) 

copolymer-coated substrates treated with several solvents was observed by AFM. The 

measurement was performed at room temperature in air. With regards to solubility in 

water, ethanol, and hexane, PMT20–5 and PMPT20–5 were insoluble in water, while 

PMP, PMT20–5, and PMPT20–5 were insoluble in ethanol. All of the samples were 

insoluble in hexane. In the case of the samples immersed in water, the hydrophilic 

moieties in the copolymer became enriched on the polymer surface. The membranes 

formed somewhat smooth structures with heights of the roughness for PMT20–5 and 

PMPT20–5 in the range of 3.83–16.50 nm and 4.00–12.31 nm, respectively (Figure 

4.11). In the case of ethanol, the mPEG segment migrated to the ethanol and polymer 

interface. The surface morphologies on PMP, PMT20–5, and PMPT20–5 were island 

structures, with heights in the range of 1.85–5.60 nm, 3.71–9.99 nm, and 4.00–13.60 nm, 

respectively (Figure 4.12). When all samples were immersed into hexane for 2 h, all of 

the monomer units in copolymer were insoluble and fixed. The surface roughness was 

seen to be the most enhanced (Figure 4.13). The heights of poly(MEA), PMP, PMT20–5, 

and PMPT20–5 were approximately 6.24–54.07 nm, 8.60–56.22 nm, 8.06–26.10 nm, 

and 7.01–29.51 nm, respectively. However, the differences in roughness values of the 

samples were not related to the changes in wettability observed.  
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Figure 4.11.  AFM images of the surface roughness and surface height after 

immersion into water for 2 h of (a) PMT20–5 and (b) PMPT20–5(Scan area: 

5.0 × 5.0 μm
2
).  

(b) PMPT20–5 (a) PMT20–5 
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(a) PMP (b) PMT20–5 

(c) PMPT20–5 

Figure 4.12.  AFM images of the surface roughness and surface height after 

immersion into ethanol for 2 h of (a) PMP, (b) PMT20–5, and (c) PMPT20–5 

(Scan area: 5.0 × 5.0 μm
2
).  
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(c) PMT20–5 (d) PMPT20–5 

(b) PMP (a) Poly(MEA) 

Figure 4.13.  AFM images of the surface roughness and surface height after 

immersion into hexane for 2 h of (a) poly(MEA) (b) PMP, (c) PMT20–5, and 

(d) PMPT20–5 (Scan area: 5.0 × 5.0 μm
2
). 
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In general, when the polymer-coated substrates were immersed in different solvents, 

the contact angle changed depending on the polarity of the solvent. However, in the 

cases where the copolymer incorporated oligo PTMC and mPEG segments, the contact 

angle rapidly returned to its initial stage after exposure to nitrogen gas flow. Upon 

immersion into water, the hydrophobic PTMC segments on the polymer surface 

migrated inside the polymer membrane, and hydrophilic mPEG segments were enriched 

on the surface to decrease the free energy of the interface. The author hypothesize that 

the amorphous PTMC segments inside the polymer membrane became concentrated on 

the surface upon exposure to nitrogen gas flow for few seconds due to their high 

molecular mobility (Figure 4.14). This switching behavior was further seen to be a 

repeatable responsive property. From these results, the surface properties of the 

amphiphilic graft copolymer can be seen, such as their rapid environmental 

responsiveness and reversible control of its hydrophilic-hydrophobic balance. 

 

 

 

 

 

 

 

Rapid response 

few seconds 

In dry condition  In wet condition 

PTMC oligo segment mPEG oligo segment 

Figure 4.14.  Illustration of the rapid and responsive surface copolymer switching 

behavior. 
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4.4 Conclusions 

The author reports the design and synthesis of novel amphiphilic graft copolymers 

containing oligo PTMC and mPEG segments by a macromonomer method. By tuning 

the polymer polarity through the incorporation of main chain hydrophilic 

2-hydroxyethyl acrylate or hydrophobic 2-methoxyethyl acrylate, the wettability of the 

polymer membranes prepared by spin coating was investigated. PTMC copolymers 

showed glass transition temperatures below 0°C. These copolymers showed flexible 

mobility of its segment at room temperature. The contact angle in air observed rapidly 

changed upon alterations in the length of PTMC incorporated and the composition ratio. 

These observations were caused by reorientation of the different polar segments within 

the polymer membrane upon contact with water. However, from the results of AFM 

measurements, it can be seen that the switching behavior of the contact angle was not 

dependent on the surface roughness of the membrane due to the composition ratio of 

side chains and immersing in solvents. The rapid environmental responsiveness of 

PTMC and mPEG segments was further shown to be reversible, and demonstrated a 

control of the hydrophilic-hydrophobic balance on the graft copolymer. By selecting 

appropriate functional monomers for polymer backbones, the graft copolymers 

incorporating oligo PTMC and mPEG segments are expected to have applications as 

more intelligent surface responsive materials. These biocompatible graft copolymers 

with surface responsiveness have potential uses as surface modifiers for medical and 

biomaterial applications. 
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Chapter 5 

Design and Synthesis of Amphiphilic Graft Hydrogel Having 

Hydrophobic Domain Formed by Multiple Physical 

Interactions 
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5.1 Introduction 

Polymeric hydrogels are widely researched biomaterials. In order to develop various 

applications, plenty of hydrogel designs were proposed to improve their properties. 

Various cross-linking structures are investigated in terms of chain entanglement, 

molecular interaction, and molecular weight between cross-link points. Double network 

gels, hydrogen bonding gels, and tetra-poly(ethylene glycol) gels are researched [1–3]. 

In this chapter, an amphiphilic hydrogel cross-linked via physical interactions, such as 

hydrophobic interaction and hydrogen bonding, was designed and prepared. The author 

focused on the incorporation of graft gel as functional pendant segment into the 

hydrogel. For example, Kaneko et al. reported poly(N-isopropyl acrylamide)-grafted 

hydrogel having fast response rate to temperature [4]. Furthermore, hydrogel based on 

amphiphilic macromonomer was reported by Xu et al [5]. This hydrogel was formed by 

the aggregation of micelles into the hydrogel upon temperature change. 

The hydrophobic poly(trimethylene carbonate) (PTMC) segment is easily and 

precisely synthesized by ring-opening polymerization (ROP) technique. Additionally, 

PTMC has been widely investigated in the biomaterials field because of its 

biodegradability by lipase and its amorphous property [6, 7]. 

In this chapter, the author examined the graft gel that includes the amphiphilic 

polymeric hydrogel with the PTMC macromonomer as the hydrophobic graft segment 

(Figure 5.1(a)). Graft hydrogels with a polymerization degree of PTMC ranging from 

10 to 50 and grafting ratio from 1 to 10 mol% were prepared. The hydrophilic–

hydrophobic balance was controlled by altering the above two parameters. In addition, 

poly(2-acrylamidoglycolic acid) (PAGA) was selected as the hydrophilic main chain. 

PAGA has numerous advantages such as hydrogen bonding ability, pH sensitivity, and 
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the presence of multiple reactive groups. 

The author investigated the fundamental properties of the amphiphilic graft 

hydrogel. It spontaneously formed three-dimensional structure via physical interaction. 

Therefore, the favorable behavior of the hydrogel was changed by the hydrophobic 

effect and its physical properties were examined by swelling ratio measurement and 

scanning electron microscopy (SEM). The functional property of molecular loading was 

monitored by UV–Vis measurement using hydrophobic dye. The graft gel having 

PTMC segments is suitable for molecular adsorbent applications and this function is 

important for biomaterials and environmentally friendly materials. 

  

Hydrophilic segment composed 

of acrylamide derivative 

Hydrogen bonding PTMC segment 

Hydrophobic 

(a) Graft gel 

(b) GAT 

AGA HEAA–PTMC MBA 

Figure 5.1.  (a) Illustrations of the graft gel including PTMC segment. (b) 

Chemical structure of poly(AGA–co–HEAA–PTMC) (GAT) graft gel. 
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5.2 Experimental Section 

5.2.1 Materials 

For ROP, trimethylene carbonate (TMC), as cyclic monomer, and 

1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), as organic catalyst, were purchased from 

Tokyo Chemical Industry, Co., Ltd., Tokyo, Japan. N-Hydroxyethyl acrylamide 

(HEAA) was kindly supplied by KOHJIN Co., Ltd., Tokyo, Japan. In order to terminate 

the polymerization, benzoic acid (Wako Pure Chemical Industries, Ltd., Osaka, Japan) 

was used. For free radical polymerization, 2-acrylamidoglycolic acid monohydrate 

(AGA; Sigma-Aldrich Corp., St. Louis, MO, USA) was used as the monomer. 

2,2’-Azobis(isobutyronitrile) (AIBN, Tokyo Chemical Industry Co., Ltd.) was used as 

the initiator for radical polymerization. N,N’-Methylenebis(acrylamide) (MBA, Wako 

Pure Chemical Industries, Ltd.) was used as a cross-linker. For confirmation of 

hydrogen bonding, urea was employed (Wako Pure Chemical Industries, Ltd.). 

Solutions with different pH values were prepared under the following buffer solutions: 

pH 3.0: glycine and HCl, pH 5.0: citric acid and NaOH, pH 7.1: phosphate buffered 

saline (PBS), pH 9.0: Na2CO3 and NaHCO3, and pH 11.0: Na2HPO4 and NaOH. PBS 

(Dulbecco’s PBS) was purchased from Life Technologies Corp., Waltham, MA, USA. 

Other reagents were purchased from Wako Pure Chemical Industries. To investigate the 

drug incorporation function of the hydrogel, Basic Blue 7 (BB7) (Tokyo Chemical 

Industry, Co., Ltd.) was used as a model drug. All organic solvents were used as 

received. 

 

5.2.2 Synthesis of Poly(AGA–co–HEAA–PTMC) Graft Gel 

The HEAA–PTMC macromonomer was prepared according to a previously reported 
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procedure [8]. The author prepared the macromonomer with approximately 10, 20, and 

50 repeating units of TMC. The DP of PTMC was calculated from the 1H NMR 

spectrum in CDCl3. 

To prepare the graft gel, free radical polymerization was carried out using AIBN, 

AGA, MBA, and HEAA–PTMC macromonomer (Figure 5.1(b)). The reagents were 

each dissolved in N,N-dimethylformamide (DMF), and then, their solutions were mixed. 

The total concentration of initiator, monomer, and macromonomer was 1.5 mol/L. The 

solution was degassed under reduced pressure and then was substituted by nitrogen gas. 

The mixture solution (1 mL) was heated at 70°C for 9 h in a 2.2 mL sample tube. To 

remove unreacted compounds, the crude product was immersed into a DMF/water 

mixed solution (DMF:water = 1:1) and into ultrapure water. Chemical structures were 

confirmed by FT–IR measurements. IR (in ATR mode, cm–1): 3000–3500 (–C(=O)–

NH–, and –OH), 1740 (–C=O), 1650 (–COOH), and 1240 (–C–O–C–). 

 

5.2.3 Swelling Ratio Measurement 

The prepared hydrogel was lyophilized and put into a nylon mesh bag. Before and 

after immersion in solutions at 37°C, the weight of the hydrogel was measured. The 

swelling ratio of the hydrogel was calculated by the following equation:  

 

Swelling ratio (%) = (Ws – Wd)/Wd × 100 

 

where Ws and Wd are the weights of the swollen hydrogel and the dried hydrogel, 

respectively. The pH values of each buffer solution were approximately 3.0, 5.0, 7.1, 9.0, 

and 11.0, respectively. The change in the swelling ratio of the hydrogel in different pH 
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solutions was measured after a 2 h interval for each solution. To confirm hydrogen 

bonding in the hydrogel, the change in swelling ratio was measured by using urea (2 

mol/L). In addition, the hydrogel was heated in boiling water at 70°C [11]. 

 

5.2.4 Observation of Surface and Interior Morphology of Hydrogel 

The lyophilized hydrogel was observed by SEM. The cut hydrogel was fixed by 

carbon tape on a sample stage, and then electro-conductive paste (DOTITE; Fujikura 

Kasei Co., Ltd., Tochigi, Japan) was spotted onto the corner of the sample. The sample 

was sputter-coated with platinum prior to the observation. 

 

5.2.5 Evaluation of Model Drug Incorporation in Hydrogel 

To evaluate the molecular loading function, hydrophobic BB7 (λmax = 616 nm, 

solubility in water: 2.0 g/dL) was used as a model drug (Figure 5.2). The amount of 

drug loading was evaluated from absorbance values at 616 nm obtained from UV–Vis 

spectroscopy [9]. The BB7 aqueous solution was prepared with ultrapure water. The 

final concentration of BB7 was 10–5 mol/L. The swollen hydrogel (10 mg/mL at dried 

gel) was immersed into BB7 aqueous solution at room temperature. The UV–Vis 

spectrum of the supernatant was monitored at given times. 

 

 

 

 

 

 

n-Octanol 

Water 

Figure 5.2.  Chemical structure of BB7. 
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5.3 Results and Discussion 

5.3.1 Preparation of Graft Gel Having PTMC Segments 

The HEAA–PTMC macromonomer was synthesized by using DBU as basic organic 

catalyst. The feed ratio of [TMC]/[HEAA] was 10, 20, and 50. The DPs of PTMC 

calculated by 1H NMR were 9, 19, and 49, respectively. In the 1H NMR spectrum, the 

methylene signal on the PTMC (t, 4H, –CH2–CH2–CH2–) shifted from around 4.5 to 4.2 

ppm and the presence of the amide group of HEAA (br, 1H, –C(=O)–NH–CH2–) was 

confirmed, showing no side-reactions. The product state of HEAA–PTMC was a clear 

viscous liquid when the DP of PTMC was 10 or 20. On the other hand, it was a white 

wax when the DP was 50. The product state was well correlated with the molecular 

weight of PTMC, indicating a corresponding enhancement of the molecular interaction. 

The hydrogel with PTMC segments was prepared in a test tube by free radical 

polymerization using AIBN as the initiator. Unreacted chemicals such as AGA and the 

macromonomer were sequentially removed by immersing into DMF, ultrapure water, or 

their solution for three days. These solvents were replaced several times. The color of 

the resulting hydrogel was clear light yellow, derived from PAGA. All macromonomers 

having PTMC were insoluble in water and their appearance was a white precipitate in 

water. Therefore, the author expected that the unreacted macromonomer was completely 

removed from the hydrogel, and then the amphiphilic property of the hydrogel was 

examined. The chemical structure was confirmed by FT–IR measurement (Figure 5.3). 

The amide groups derived from AGA and HEAA–PTMC were observed at 3000–3500 

cm–1. In addition, the stretching vibration peaks of PTMC were observed at 1240 and 

1740 cm–1 [10]. Therefore, the author concluded that the poly(AGA–co–HEAA–PTMC) 

graft gel was prepared. Table 5.1 summarizes the preparative condition for the graft gels. 
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The sample code was abbreviated as GATn–b, where “b” represents the PTMC 

macromonomer composition. The “n” represents the DP of PTMC. For example, 

GAT10−1 refers to the graft hydrogel with a DP of PTMC and a macromonomer 

composition of approximately 10 and 1 mol%, respectively. 
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Figure 5.3.  FT–IR spectrum of GAT50–1 graft gel. 
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Table 5.1.  Preparation of amphiphilic graft hydrogels 
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5.3.2 Change in Swelling Ratio of Graft Gel 

Swelling ratio was measured by using the nylon mesh bag method. Figure 5.4 shows 

swelling ratios of hydrogels obtained under various conditions. First, the author 

investigated the dependence on the MBA concentration. PAGA gel–0, PAGA gel–1, 

PAGA gel–3, and PAGA gel–5 represent sample codes for MBA concentrations of 0, 1.0, 

3.0, and 5.0 mol%, respectively. The maximum swelling ratio of PAGA gel–0 was about 

2,300% within 6 h. Maximum swelling ratios of PAGA gel–1, PAGA gel–3, and PAGA 

gel–5 were about 1,550, 1,450, and 900% within 6 h. By increasing the MBA 

concentration, tight cross-linking occurred in the polymer solution, and AGA, as an 

acrylamide derivative, formed cross-linking points by hydrogen bonding. Therefore, by 

increasing the MBA concentration, the swelling ratio of each sample in water decreased. 
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Figure 5.4.  Swelling ratio of AGA gel depending on MBA concentration was 

plotted in PBS solution at 37°C. PAGA gel–0: ○, PAGA gel–1: □, PAGA gel–3: 

△, and PAGA gel–5: ◇. 
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The graft gel has PTMC segments, but GAT10–1 showed a high swelling ratio of 

1,000%, which is similar to the PAGA gel. All PAGA gels and GAT10–1 fell through 

the nylon mesh bag due to weak molecular interaction. Other graft gels were much more 

stable, showing strong molecular interactions. 

Figure 5.5(a) shows plots of swelling ratio variation based on different graft ratios. 

The effect of the graft ratio was examined by using GAT10–1, GAT10–5, and GAT10–

10. GAT10–5 and GAT10–10 showed a maximum swelling ratio of 700 and 270% 

within 12 h. Furthermore, the effect of the segment length was examined by using 

GAT10–5, GAT20–5, and GAT50–5 (Figure 5.5(b)). GAT20–5 and GAT50–5 showed 

maximum swelling ratios of 380 and 105% within 18 h. Upon increasing the graft ratio 

and segment length, hydrophobic interactions between PTMC molecules increased. The 

result of swelling ratio measurement was well correlated with the graft ratio of HEAA–

PTMC macromonomer and the segment length. The swelling ratio could be controlled 

by altering the incorporation ratio of PTMC segments and the DP of PTMC. From the 

results of swelling ratio experiments, the graft gels were shown to possess amphiphilic 

properties, even when a higher amount of hydrophobic segments was contained. 
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Figure 5.5.  Plots of swelling ratio variation of graft gels in PBS solution with time at 

37°C. (a) Dependence on the graft ratio. (b) Dependence on the PTMC segment length. 
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The pH sensitivity was addressed; Figure 5.6 shows results of pH dependence on the 

swelling ratio. Graft gel, GAT50–1, showed pH sensitivity due to the PAGA monomer 

unit. The carboxyl group in PAGA hydrophilic polymer backbone was protonated in an 

acidic environment, and the gel shrank. On the other hand, in a basic environment, 

PAGA from graft gels was deprotonated and the gel swelled. In pH 11, the swelling 

ratio decreased to dissociate network bond by alkaline hydrolysis. This swelling and 

shrinking behavior was observed to be reversible. 

The gel was not only chemically but also physically cross-linked. One of the 

physical cross-linking methods was by hydrogen bonding. To confirm hydrogen 

bonding formation, change in the swelling ratio of GAT50–1 was observed after urea 

addition and heating in water (Figure 5.7). In the case of urea addition at room 

temperature, the swelling ratio was about 100% within 1 h and the gel state was 
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Figure 5.6.  Plots of the swelling ratio change for graft gels in solution with 

various pH solutions at 37°C. Measurement time interval was 2 hours. 
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maintained. By heating at 70 °C without urea, the swelling ratio was changed to about 

100% within 1 h and then the graft gel was gradually dissolved after 4 h. However, the 

swelling ratio of the graft gel was dramatically changed by both urea addition and 

heating. The one of the swelling ratio was observed at 220% and then the gel dissolved 

in a similar way after urea addition. From these results, a part of the driving forces of 

gel formation in the network structure was shown to be the hydrogen bonds. Urea 

molecules formed strong hydrogen bonding with poly(AGA), as an acrylamide 

derivative, reducing hydrogen bonding around the poly(AGA) segment. Moreover, 

hydrogen bonding is generally weak against heating. Therefore, cross-linking by 

hydrogen bonding was disassociated by the addition of urea and heating. This 

phenomenon led to dissolution of the graft gel. 
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Figure 5.7.  Swelling ratio of GAT50–1 plotted in urea solution, at room 

temperature or 70°C. Blank: ○, Urea (70°C): △, and Urea (r.t.): □. 
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5.3.3 Observation of Surface and Interior Morphology of Hydrogel 

Figure 5.8 shows SEM images of GAT10–1, GAT10–5, GAT20–1, and GAT20–5. 

SEM images displayed the following components: surface skin layer and porous interior. 

The morphology of the hydrogel composed of PAGA as hydrophilic backbone showed 

only a sponge-like structure. The pore size was about 100 µm. On the other hand, when 

the amount of TMC units was increased in the hydrogels, the pores were much smaller 

(about 2 µm) or disappeared. With an increasing number of TMC units, the interior of 

the gel formed a solid structure. For example, PAGA gel–3 and GAT20–1 were 1.5 µm 

and 12 µm thick, respectively. These layers formed by PTMC segregated on the surface, 

and the hydrophobic PTMC prevented water molecules from penetrating. These results 

were based on the higher molecular mobility of amorphous PTMC segments and 

corresponded to the swelling ratio trend. 

 

 

 

 

 

 

 

 

 

 

 

 



116 

 

 

 

 

 

 

 

 

 

 

LT: Layer thickness 

(d) GAT20–5, LT: 100 μm (c) GAT20–1, LT: 12 μm 

(b) GAT10–5, LT: 40 μm (a) GAT10–1, LT: 2.5 μm 

20 μm 

10 μm 

10 μm 

10 μm 

Figure 5.8.  SEM pictures of graft hydrogels having different graft ratio or PTMC 

segment lengths. Morphologies were composed of skin layer and porous interior. (a) 

GAT10–1, (b) GAT10–5, (c) GAT20–1, and (d) GAT20–5. 
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5.3.4 Evaluation of Molecular Incorporation Using Hydrophobic Dye 

In this study, BB7 was used as a hydrophobic model drug. The behavior of the 

supernatant of the BB7 solution containing the lyophilized hydrogel was monitored by 

UV–Vis spectroscopy. Measurements were performed at 0, 1, 5, 16, and 24 h. As shown 

in Figure 5.9, the absorbance of BB7 at 616 nm decreased in all sample tubes including 

the blank, PAGA gel–3, and the graft gel. In the case of the blank, the absorbance only 

slightly changed. On the other hand, the absorbance of PAGA gel–3 and the graft gel 

gradually changed at the given time. The maximum wavelength absorption changed the 

most in the case of PAGA gel–3 and the graft gel. The absorbance at 616 nm decreased 

fast in the supernatant of the graft gel mixture. In particular, the absorbance of the 

supernatant with GAT20–10 decreased extremely fast compared with that of other 

samples. From these results, it can be concluded that the adsorption of BB7 was based 

on the PTMC segment in the gel. BB7 dye was absorbed in the hydrophobic domain 

formed by PTMC segments. Figure 5.10 shows the normalized profile of the BB7 

absorption on the hydrogel. The BB7 absorption increased with increasing time. In 

particular, GAT20–5 and GAT20–10 showed fast incorporation of BB7. Furthermore, 

this absorption behavior did not depend on the high swelling ratio, but the composition 

ratio of PTMC segment was the dominant factor. On the other hand, the plots of PAGA 

gel–3 and GAT20–1 showed slow absorption of BB7. Subsequently, these absorbing 

hydrogels were immersed into ultrapure water (Figure 5.11). BB7 diffused with time 

and discolored the PAGA gel–3. Thus, the BB7 molecule incorporated into the hydrogel 

was located in the media and diluted by the concentration gradient. In the case of the 

graft gels, the BB7 molecule was retained in the hydrogel upon exposure to acetone or 

ultrapure water over a longer period of time. The author concluded that PTMC has 



118 

 

absorbed BB7 by hydrophobic interactions. Therefore, BB7 in the graft gel was not 

affected by the external environment, by the concentration gradient. In the case of 

higher incorporation ratios of PTMC, the results indicated that the adsorption of BB7 

was fast and active. 
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Figure 5.9.  The absorption spectra of BB7 as a model drug monitored at 1, 5, 16, 

and 24 h, from the top spectrum, respectively. The absorbance of the supernatant of 

the aqueous solution containing the hydrogel, (a) blank, (b) PAGA gel–3, (c) GAT20–

1, and (d) GAT20–10, was measured. 

(b) PAGA gel–3 
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Figure 5.10.  Normalized profile of BB7 absorption within the hydrogel. PAGA gel–3: 

○, GAT20–1: ○, GAT20–5: ○, and GAT20–10: ○. 

(a) PAGA gel (b) Graft gel 

Figure 5.11.  Pictures of (a) PAGA gel and (b) graft gel in water. These gels were 

immersed in BB7 aqueous solution for 24 h. The graft gel was retained the absorbed 

BB7. 
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5.4 Conclusions 

Hydrogels having different hydrophilic-hydrophobic ratios were prepared by 

ring-opening polymerization and free radical polymerization. By altering the 

composition ratio of the PTMC macromonomer, the swelling ratio and network 

structure properties, such as pore size, were controlled. Upon increasing the number of 

TMC units in the hydrogels, pores became smaller or disappeared. The morphology of a 

sponge-like layer or thick skin layer was also controlled by the incorporation ratio of 

PTMC. The hydrophobic domain formed by PTMC was shown to incorporate 

hydrophobic molecules. The incorporation rate depended on the composition ratio of 

PTMC segments. As a result, the graft gel having variable polarity showed useful 

functionality. The author proposes that the graft gel is a suitable candidate for 

application as a molecular absorbent in the biomedical and environmental fields. 

 

 

 

 

 

 

 

 

 

 

 

 



121 

 

5.5 References 

[1] E. Ho, A. Lowman, and M. Marcolongo, Biomacromolecules 2006, 7, 3223. 

[2] H. Dai, Q. Chen, H. Qin, Y. Guan, D. Shen, Y. Hua, Y. Tang, and J. Xu, 

Macromolecules 2006, 39, 6584. 

[3] T. Sakai, T. Matsunaga, Y. Yamamoto, C. Ito, R. Yoshid, S. Suzuki, N. Sasaki, M. 

Shibayama, and U. Chung, Macromolecules 2008, 41, 5379. 

[4] Y. Kaneko, S. Nakamura, K. Sakai, T. Aoyagi, A. Kikuchi, Y. Sakurai, and T. Okano, 

Macromolecules 1998, 31, 6099. 

[5] X.-D. Xu, X.-Z. Zhang, J. Yang, S.-X. Cheng, R.-X. Zhuo, and Y.-Q. Huang, 

Langmuir 2007, 23, 4231. 

[6] F. Nederberg, B. G. G. Lohmeijer, F. Leibfarth, R. C. Pratt, J. Choi, A. P. Dove, R. M. 

Waymouth, and J. L. Hedrick, Biomacromolecules 2007, 8, 153. 

[7] J. Mindemark, J. Hilborn, and T. Bowden, Macromolecules 2007, 40, 3515. 

[8] K. Nitta, J. Miyake, J. Watanabe, and Y. Ikeda, Trans. Mater. Res. Soc. Jpn. 2012, 37, 

349. 

[9] H. K. Moon, Y. S. Cho, J.-K. Lee, C.-S. Ha, W.-K. Lee, and J. A. Gardella Jr., 

Langmuir 2006, 25, 4478. 

[10] K. Makiguchi, Y. Ogasawara, S. Kikuchi, T. Satoh, and T. Kakuchi, 

Macromolecules 2013, 46, 1772. 

 



122 

 

 

 

 

Chapter 6 

Preparation of Amphiphilic Polymer Gels Containing 

Poly(trimethylene carbonate) Segments and Evaluation  

of Its Molecular Incorporation Properties 
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6.1 Introduction 

Excellent functionality such as mechanical strength, drug loading, and 

biocompatibility are required for advanced materials. Moreover, amphiphilic hydrogels 

can incorporate hydrophobic drug molecules for application in drug delivery systems 

[1–7]. 

The author evaluated the pH responsivity graft gel by macromonomer method in 

Chapter 5. In this study, the author designed and synthesized an amphiphilic hydrogel 

containing poly(trimethylene carbonate) (PTMC) oligo segments the degree of 

polymerization (DP) of PTMC in the feed was between 10 and 20). The hydrophilic–

hydrophobic balance was controlled by altering the length of the PTMC segments and 

the PTMC macromonomer composition ratio. PTMC has several favorable properties; 

for example, it is hydrophobic, amorphous, and biocompatible. Block copolymers 

containing PTMC segments have been reported to have molecular incorporation 

abilities as membranes and colloidal materials. The author investigated these 

amphiphilic hydrogels and selected three different functional monomers for use: 

2-acrylamido-2-methylpropanesulfonic acid (AMPS), N-hydroxyethyl acrylamide 

(HEAA), and 2-hydroxyethyl acrylate (HEA) (Figure 6.1). 

   The author synthesized amphiphilic graft gels by ring-opening polymerization 

(ROP) and photo-polymerization. Photo-polymerization is appropriate for hydrogel 

synthesis because it is rapid; the hydrogel can be prepared in a few minutes without the 

deformation caused by heat polymerization [8, 9]. In this chapter, the author discusses 

our investigation into the swelling ratio and the molecular incorporation properties in 

the hydrophobic domain using different model molecules, such as hydrophobic dyes 

Basic Blue 7 and Rhodamine 6G.  
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Figure 6.1. Chemical structures of (a) poly(AMPS–co–HEAA–PTMC) (GAMT), (b) 

poly(HEAA–graft–PTMC) (GHET), and (c) poly(HEA–graft–PTMC) (GHT). 
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6.2 Experimental Section 

6.2.1 Materials 

 Trimethylene carbonate (TMC), AMPS, HEA, and 2,2ʹ-azobis(isobutyronitrile) 

(AIBN) were purchased from Tokyo Chemical Industry, Co., Ltd., Tokyo, Japan. 

1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) and benzoic acid were purchased from 

Wako Pure Chemical Industries, Ltd., Osaka, Japan. HEAA was supplied by KOHJIN 

Co., Ltd., Tokyo, Japan. N,N'-Methylenebisacrylamide (MBA, Wako Pure Chemical 

Industries, Ltd.) was used as the cross-linker. For photo-radical polymerization, the 

initiator, 2,2-dimethoxy-2-phenylacetophenone (DPAP; Tokyo Chemical Industry, Co., 

Ltd.) was used. To investigate the drug incorporation property in the hydrogel, Basic 

Blue 7 (BB7) (Tokyo Chemical Industry, Co., Ltd.), Allura Red AC (Tokyo Chemical 

Industry, Co., Ltd.), and Rhodamine 6G (R6; Wako Pure Chemical Industries, Ltd.) 

were used as a model drug. Phosphate buffered saline (PBS) was purchased from Life 

Technologies Corp., Waltham, MA, USA. All organic solvents were used as received. 

 

6.2.2 Synthesis of HEAA–PTMC Macromonomer 

The HEAA–PTMC macromonomer was prepared according to previously reported 

procedure [10]. The DP of PTMC was calculated from the proton nuclear magnetic 

resonance (
1
H NMR) spectrum in CDCl3. The author prepared the macromonomer with 

approximately 10 and 20 repeating units of TMC.  

 

6.2.3 Synthesis of HEA–PTMC Macromonomer 

The HEA–PTMC macromonomer was prepared according to previously reported 

procedure [10]. The DP of PTMC was calculated from the 
1
H NMR spectrum in CDCl3. 
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The author prepared the macromonomer with approximately 10 and 20 repeating units 

of TMC.  

 

6.2.4 Preparation of Poly(AMPS–co–HEAA–PTMC) Graft Gel 

To prepare the graft gel, free radical polymerization was carried out using DPAP as 

initiator, AMPS, MBA, and HEAA–PTMC macromonomer (Figure 6.1(a)). Each 

reagent was dissolved in N,N-dimethylformamide (DMF), and these solutions were 

mixed. The total concentration of monomer and macromonomer was 1.5 mol/L. The 

concentration of DPAP was 7.5 µmol/L. Then, the mixture was poured onto glass plates 

separated by silicon rubber (thickness: 0.5 mm), and covered with a glass plate as a lid. 

This solution was polymerized by UV irradiation at 365 nm with an intensity of 3,000 

mW/cm
2
 for 600 s. The UV lamp was Type ZUV–C30H equipped with Type ZUV–

L3H spot lens, OMRON Co., Ltd., Kyoto, Japan. The prepared hydrogel was punched 

out in 5 mm in diameter circles. To remove any unreacted compounds, the crude 

product was immersed into a DMF/water mixed solution (DMF:water = 1:1), and it was 

then immersed in ultrapure water. Subsequently, the prepared hydrogel was purified. 

The chemical structure was confirmed by FT–IR measurements. IR (in ATR mode, cm
–

1
): 3200–3500 (–C(=O)–NH–, and –OH), 1730 (–C(=O)–O–), 1550–1650 (–C(=O)–

NH–), 1250 (–C–O–C–), and 1150 (–SO3
–
) [11, 12]. 

 

6.2.5 Preparation of Poly(HEAA–graft–PTMC) Graft Gel 

To prepare the graft gel, free radical polymerization was carried out using DPAP as 

initiator, HEAA, MBA, and HEA–PTMC (Figure 6.1(b)). Each reagent was dissolved in 

N,N-dimethylformamide (DMF), and these solutions were mixed. The total 
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concentration of monomer and macromonomer was 1.5 mol/L. The concentration of 

DPAP was 7.5 µmol/L. Then, the mixture was poured onto glass plates separated by 

silicon rubber (thickness: 0.5 mm), and covered with a glass plate as a lid. This solution 

was polymerized by UV irradiation at 365 nm with an intensity of 3,000 mW/cm2 for 

600 s. The UV lamp was Type ZUV–C30H equipped with Type ZUV–L3H spot lens, 

OMRON Co., Ltd., Kyoto, Japan. The prepared hydrogel was punched out in 5 mm in 

diameter circles. To remove any unreacted compounds, the crude product was immersed 

into a DMF/water mixed solution (DMF:water = 1:1), and it was then immersed in 

ultrapure water. Subsequently, the prepared hydrogel was purified. The Chemical 

structure was confirmed by FT–IR measurements. IR (in ATR mode, cm
–1

): 3150–3550 

(–C(=O)–NH–, and –OH), 1730 (–C(=O)–O–), 1550–1650 (–C(=O)–NH–), and 1230 (–

C–O–C–). 

 

6.2.6 Preparation of Poly(HEA–graft–PTMC) Graft Gel 

To prepare the graft gel, free radical polymerization was carried out using DPAP as 

initiator, HEA, MBA, and HEA–PTMC (Figure 6.1(c)). Each reagent was dissolved in 

N,N-dimethylformamide (DMF), and these solutions were mixed. The total 

concentration of monomer and macromonomer was 1.5 mol/L. The concentration of 

DPAP was 7.5 µmol/L. Then, the mixture was poured onto glass plates separated by 

silicon rubber (thickness: 0.5 mm), and covered with a glass plate as a lid. This solution 

was polymerized by UV irradiation at 365 nm with an intensity of 3,000 mW/cm2 for 

600 s. The UV lamp was Type ZUV–C30H equipped with Type ZUV–L3H spot lens, 

OMRON Co., Ltd., Kyoto, Japan. The prepared hydrogel was punched out in 5 mm in 

diameter circles. To remove any unreacted compounds, the crude product was immersed 
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into a DMF/water mixed solution (DMF:water = 1:1), and it was then immersed in 

ultrapure water. Subsequently, the prepared hydrogel was purified. The Chemical 

structure was confirmed by FT–IR measurements. IR (in ATR mode, cm
–1

): 3000–3700 

(–OH), 1715 (–C(=O)–O–), and 1180–1240 (–C–O–C–) [13]. 

 

6.2.7 Swelling Ratio Measurements 

The prepared hydrogel was immersed into aqueous solution, and the volume of the 

hydrogel in its equilibrium state was measured. The swelling ratio of the hydrogel was 

calculated by the following equation:  

 

Swelling ratio = (Vs – V0)/V0 

 

where Vs and Vd are the volumes of the swollen hydrogel and the dried hydrogel, 

respectively.  

 

6.2.8 Observation of Surface and Interior Morphology of Hydrogel 

The dried hydrogel was observed by SEM. The cut hydrogel was fixed by carbon 

tape on a sample stage, and then electro-conductive paste (DOTITE; Fujikura Kasei Co., 

Ltd., Tochigi, Japan) was spotted onto the corner of the sample. The sample was 

sputter-coated with platinum prior to the observation. 

 

6.2.9 Evaluation of Selective Model Drug Incorporation in Hydrogel 

The author evaluated the molecular loading ability of the graft gel. Hydrophobic BB7 

(solubility in water = 20 g/L), hydrophilic AR (solubility in water = 120 g/L), and 
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amphiphilic R6 were used as a model drug (Figure 5.2 and Figure 6.2) [14]. The 

water/n-octanol partition coefficient indicate the hydrophobicity of a molecule, and BB7 

and R6 both soluble in n-octanol; in addition, AR and R6 were present in the water 

partition. Therefore, R6 is both hydrophobicity and hydrophilicity. Each organic dye 

aqueous solution was prepared with ultrapure water. The mixed aqueous solution of 

BB7 (15 µmol/L) + AR (25 µmol/L) and BB7 (10 µmol/L) + R6 (10 µmol/L). The 

swollen hydrogel (one disc) was immersed into each mixed dye solution at room 

temperature. The UV–Vis spectrum of the supernatant was monitored at given intervals. 

The amount of drug loading was evaluated from absorbance values obtained from UV–

Vis spectroscopy. To investigate the dye release, the dye-molecule-loaded graft gels 

were immersed in a 10% PBS solution for 6 h. The supernatant PBS solution was then 

subjected to UV–Vis spectroscopy analysis. 
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Figure 6.2.  Chemical structures of (a) AR and (b) R6. 
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6.3 Results and Discussion 

6.3.1 Synthetic Results of Graft Gels 

HEAA–PTMC and HEA–PTMC were synthesized by ROP. The feed ratios of 

[TMC]/[HEAA] and [TMC]/[HEA] were 10 and 20, respectively. The DP of PTMC 

calculated by 
1
H NMR was approximately 11 and 21. The various graft gels were 

prepared by photo-radical polymerization using DPAP as the initiator. The concentration 

of DPAP, macromonomer, and MBA were 0.5 mol%, 2 mol%, and 3 mol%, respectively. 

After polymerization, the graft gels were molded into a disc shape (5 mm in diameter). 

Unreacted chemicals such as monomer and the macromonomer were sequentially 

removed by immersion in DMF and ultrapure water for three days, and these solvents 

were replaced several times during that period. The chemical structure was confirmed 

by FT–IR measurement (Figure 6.3). The amide groups in AMPS and HEAA were 

observed as a broad absorption at 1150–1650 cm
–1

 and 3150–3550 cm
–1

. The sulfone 

group in AMPS was identified stretching vibration at 1230 cm
–1

.The stretching 

vibration peaks of PTMC were observed at near 1180–1240 cm
–1 

and 1715–1730 cm
–1

. 

Table 6.1 summarizes the preparation condition for the graft gels. The sample codes are 

abbreviated as G”M”Tn, where “M” represents the monomer, AMPS = AM, HEAA = 

HE, and HEA = H, and “n” represents the DP of PTMC. For example, GAMT10–2 

refers to the graft hydrogel containing a poly(AMPS) main chain with a DP of PTMC 

and macromonomer composition of approximately 10 and 2 mol%, respectively. 
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Table 6.1.  Preparation of amphiphilic graft hydrogels 

MBA

Poly(AMPS) 97 0 3 60.8

GAMT10–2 95 2 (11) 3 46.2

GAMT20–2 95 2 (21) 3 35.8

Poly(HEAA) 97 0 3 5.1

GHET10–2 95 2 (11) 3 2.5

GHET20–2 95 2 (21) 3 2.2

Poly(HEA) 97 0 3 2.9

GHT10–2 95 2 (11) 3 1.0

GHT20–2 95 2 (21) 3 0.6

V s/V 0Sample
Monomer

Feed ratio (mol%)

PTMC macromonomer (DP)

Figure 6.3.  FT–IR spectra of (a) GAMT10–2, (b) GHET10–2, and (c) GHT10–2. 
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6.3.2 Change in Swelling Ratio of Graft Gel 

Table 6.1 shows the swelling ratio of the hydrogel at equilibrium swelling. The 

hydrogel can uptake water into the network structure. Moreover, surface morphology 

was observed porous structure as shown Figure 6.4. The poly(AMPS) graft gel swelled, 

absorbing a large amount of water; however, these swollen gels are fragile due to their 

bulky chemical structures [11, 12].The sulfone group in the poly(AMPS) chain expands 

significantly due to ionic repulsion. Therefore, a large amount of water can be adsorbed 

into the network. The swelling ratios of poly(AMPS), GAMT10–2, and GAMT20–2 

gels were approximately 60.8, 46.2, and 35.2. The swelling ratio was reduced due to the 

increasing hydrophobic interactions caused by the PTMC segments. The swelling ratios 

of poly(HEAA), GHET10–2, and GHET20–2 gels were 5.1, 2.5, and 2.2, respectively. 

Water uptake also decreased with increasing length of PTMC segment. Poly(HEAA) is 

non-ionic polymer that has a high affinity for water due to the hydroxyl and amide 

functional groups. In addition, the cross-linking sites of poly(HEAA) graft gel are 

expected to form hydrogen bonding and hydrophobic interactions besides chemical 

cross-linking caused by MBA. The poly(HEA) gel, GHT10–2, and GHT20–2 were clear, 

flexible, and had low swelling ratios: 2.9, 1.0, and 0.6. With increasing length of the 

PTMC segment, the swelling ratio decreased due to the poly(HEA) polymer backbone. 

Increasing the DP of PTMC, as in GHT, led to a hydrophobic gel, and poly(HEA) gels 

were more hydrophobic than the poly(AMPS) gels and poly(HEAA) gels. Poly(HEA) 

gels have no porous structure in Figure 6.4(c). Because, poly(HEA) gels were 

comparatively much hydrophobic gel than that of poly(AMPS) gels and poly(HEAA) 

gels. From these results of the swelling ratio and SEM photographs, the author 

synthesized graft gels at intended. 

R6 

528 nm 
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(a) Poly(AMPS) (b) Poly(HEAA) (c) Poly(HEA) 

100 μm 50 μm 50 μm 

(d) GAMT10–2 (f) GHT10–2 (e) GHT10–2 

100 μm 50 μm 50 μm 

Figure 6.4.  SEM images of (a) poly(AMPS), (b) poly(HEEA), (c) poly(HEA), (d) 

GAMT10–2, (e) GHET10–2, and (f) GHT10–2. (Scale bar: 50 or 100 μm) 
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6.3.3 Evaluation of Molecular Incorporation Using Various Dyes 

The author analyzed the preferential or selective incorporation of various dyes in 

graft gels (GAMT10–2, GHET10–2, and GHT10–2). For this purpose, dyes with 

different solubilities were chosen (BB7, AR, and R6). The UV–Vis spectra of the 

supernatant solution of the hydrogel immersed in dye was monitored. Then, the amount 

of dye incorporated into the hydrogel was determined from wavelength of the maximum 

absorption.  

In the case of the mixed solution of BB7 (λmax = 616 nm) and AR (λmax = 543 nm), 

the absorbance of supernatant decreased only hydrophobic dye BB7 (Figure 6.5). By 

solvent exchange, dye molecules and water molecule was diffused and hydrophobic 

BB7 was incorporated into hydrophobic domain in graft gels by hydrophobic interaction. 

This behavior tended to increasing relative to increase hydrogel volume, and in 

GAMT10–2, concentration of BB7 into hydrogel was 6.0 µmol/L at 36 h (Figure 6.5(b)). 

Incorporation rate of dye was increased relate to the time. The author thought that AR 

concentration in mixed solution barely decreased to lead to the precipitate due to 

complexation by pair ion effect and to incorporate a part of AR molecule into graft gel. 

These molecular loading gels were immersed in PBS solution for 6 h, and these 

supernatant was analyzed to absorbance (Figure 6.6(a) and (b)). In the case of the BB7 

and AR mixed system, the AR was only released to PBS solution and graft gel was 

shrunk. The release ratio of BB7 in GAMT10–2, GHET10–2, and GHT10–2 were 4.5, 

1.1, and 0.0%, respectively. 
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Figure 6.5.  The plots of concentration of each dye, (a) AR and (b) BB7, in hydrogel 

versus time. GAMT10–2: ○, GHET10–2: ○, and GHT10–2: ○. 
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Figure 6.6.  (a) Absorption spectra of BB7 monitored from the top spectrum. The 

absorbance of the supernatant of the PBS solution in which the graft gel was 

immersed for 6 h was measured. Samples were GAMT10–2: (1), GHET10–2: (2), 

and GHT10–2: (3). (b) Photographs of various graft gels immersed in PBS solution 

for 6 h. 
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The author analyzed the preferential or selective incorporation of various dyes in 

graft gels (GAMT10–2, GHET10–2, and GHT10–2). For this purpose, dyes with 

different aqueous solubility were chosen (BB7 and R6). The UV–Vis spectra of the 

supernatant solution of the hydrogel immersed in dye was monitored. Then, the amount 

of dye incorporated into the hydrogel was determined from wavelength of the maximum 

absorption. In the case of the mixed solution of BB7 (λmax = 616 nm) and R6 (λmax = 

528 nm), on immersing GHET10–2 in the dye solution, the absorbance of supernatant 

decreased with time (Figure 6.7(a)). Both BB7 and R6 were incorporated into 

hydrophobic domains in the graft gel. Furthermore, the incorporation was active and 

rapid. The concentrations of BB7 in the graft gels GAMT10–2, GHET10–2, and 

GHT10–2 were 6.7, 5.2, and 3.9 µmol/L after 36 h, respectively (Figure 6.7(b)). The 

concentrations of BB7 incorporated into GAMT10–2, GHET10–2, and GHT10–2 were 

8.8, 5.2, and 4.3 µmol/L after 36 h (Figure 6.7(c)). The dye loading correlated with the 

swelling ratio of the hydrogels. Finally, the author investigated the release behavior of 

incorporated dye from the graft gels by immersing the swollen hydrogels in PBS 

solution for 6 h. The UV–Vis spectra of the supernatants were measured, and the 

amount of dye released was analyzed by the changes in absorbance wavelength (Figure 

6.8(a) and (b)). In the case of the BB7 and R6 mixed system, only R6 was released. The 

amounts of R6 released from GAMT10–2, GHET10–2, and GHT10–2 hydrogels were 

60.0, 18.1, and 13.7%, respectively. Therefore, the author believe that amphiphilic R6 

was incorporated into a part of hydrophilic domain, increasing the absorbance of R6. In 

particular, GAMT10–2, an ionic hydrogel, shrank to reduce ionic repulsion in the 

phosphate buffer; consequently, larger quantities of dye diffused out of the gel in 

comparison to the other hydrogels. Therefore, the author believes that the interaction 
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between hydrophobic molecules and PTMC segments is due to physical adsorption. 
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Figure 6.7.  The plots of concentration of each dye, (a) BB7 and (b) R6, in the 

hydrogel verses time. GAMT10–2: ○, GHET10–2: ○, and GHT10–2: ○. 
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Figure 6.8.  (a) Absorption spectra of R6 monitored from the top spectrum. The 

absorbance of the supernatant of the PBS solution in which the graft gel was 

immersed for 6 h was measured. Samples were GAMT10–2: (1), GHET10–2: (2), 

and GHT10–2: (3). (b) Photographs of various graft gels immersed in PBS solution 

for 6 h.  
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6.4 Conclusions 

In this chapter, the author has reported the selective incorporation of model drugs 

driven by PTMC. In this study, amphiphilic graft gels with a backbone composed of 

different hydrophilic polymers and two lengths of PTMC side chains were prepared by 

photo-radical polymerization. By using different hydrophilic main chains, the swelling 

ratio was altered. In the bulky GAMT graft gel, the pendant sulfone group absorbed a 

large amount of water. In contrast, the less bulky GHET graft gel had a low swelling 

ratio and was clear. In incorporation tests of molecules with different solubilities in 

water, the low solubility BB7 was preferentially incorporated into hydrophobic PTMC 

and was not released on shrinkage. In contrast, amphiphilic R6 was incorporated into 

graft gels and was released by shrinking. The large change in swelling ratio of GAMT 

gel increased the number if adsorbed molecules, while the GHET gel was clear and 

flexible. On the other hand, GHT graft gels did not changed their volumes, and they 

were flexible, clear, and loaded hydrophobic dye molecule. With these properties, these 

graft gels are key materials for molecular separation.  
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Concluding Remarks 

 

This thesis described the various functional materials such as colloid, membrane, 

and hydrogel, composed of amphiphilic graft copolymer. The author designed and 

synthesized copolymer by macromonomer method to tune the properties. The results 

obtained through this work are summarized as follow. 

In Chapter 2, amphiphilic graft copolymers having poly(trimethylene carbonate) 

(PTMC) segments were synthesized by macromonomer method. The author 

investigated the solution property of polymer colloid. The particle size of the 

poly(N-hydroxyethyl acrylamide–graft–PTMC) (PHET) aggregates in aqueous solution 

was indicated about 30–300 nm. Moreover, the critical association concentration (CAC) 

of the PHET was in the range of 2.2 × 10
–3

 to 8.9 × 10
–2

 mg/mL. The partition 

equilibrium constants (Kv) value was dependent on the increase in trimethylene 

carbonate (TMC) units. The author concluded that the particle size, CAC, and Kv values 

for the copolymers depended on the length of PTMC. The graft copolymer with a longer 

PTMC chain length underwent strong hydrophobic interactions, leading to an increase 

in the particle size and Kv value. The author thought that the segment having different 

degree of polymerization (DP) of PTMC was formed the different size hydrophobic 

domain. 

In Chapter 3, the graft copolymers with temperature-responsive function were 

synthesized. By introducing N-isopropyl acrylamide (NIPAAm) into the PHET 

copolymer, the author investigated the lower critical solution temperature (LCST) and 

function of molecular incorporation by fluorescence probe method. By introducing 



144 

 

hydrophilic HEAA units into poly(NIPAAm–graft–PTMC) (PNT) and poly((HEAA)–

co–NIPAAm)–graft–PTMC) (PHNT) showed LCST at 43.1°C and decreased particle 

size compared to unmodified PNT. Above the LCST, the HEAA units of the copolymer 

formed a shell structure in aqueous media and reorganized into a stable colloid. The 

CAC values of PNT and PHNT copolymers were the same values and these 

aggregations was composed of the number of copolymers (Nagg = approximately 2–4). 

Furthermore, near the CAC, PNT and PHNT copolymers were gradually formed stable 

colloids at the LCST.  

PHET and PHNT aggregates formed from the graft copolymers with PTMC 

domains may be used as potential drug delivery vehicle for loading hydrophobic 

molecules. 

In Chapter 4, the amphiphilic graft copolymers having different main chain, 

2-hydroxyethyl acrylate (HEA) or 2-methoxyethyl acrylate (MEA), were synthesized by 

macromonomer method. The author investigated the wettability of polymer membrane 

by the static contact measurement. PTMC copolymers were indicated the low glass 

transition temperature, so that the mobility of PTMC segment was high at the room 

temperature. In polymer coated glass substrate, the surface property of polymer 

membrane, poly(HEA–graft–HEA–PTMC–co–poly(ethylene glycol) monomethyl ether 

(mPEGMA)) (PHPT) and poly(MEA–co–HEA–PTMC–co–mPEGMA) (PMPT), 

changed rapidly surface responsivity in various condition, and the wettability was 

controlled by altering the length of PTMC and the composition ratio. These results 

indicated synthesized polymer controlled the wettability of material surface by main 

chain polymer and composition ratio of macromonomer. However, the properties of 

graft copolymer containing both PTMC segment and mPEG segment were not changed. 
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Therefore, the biocompatible graft copolymers with rapidly surface responsivity can be 

used for surface modifier in biomaterial field. 

   In Chapter 5, the author prepared amphiphilic graft gel by heat polymerization. By 

altering chain length of PTMC and composition ratio of PTMC macromonomer, the 

swelling ratio and pore size were controlled. This graft gels were shrank, swollen, and 

collapsed by physical binding behavior in poly(2-acrylamidoglycolic acid) (poly(AGA)) 

to respond under various pH, salt, and heating. With increasing the number of TMC 

units in the hydrogels, the pores of dried gels became smaller or disappeared. The 

morphology of a sponge-like layer or thick skin layer was also controlled by 

hydrophobic chain length and composition ratio of macromonomer. In incorporation test, 

the hydrophobic domain formed by PTMC was incorporated Basic blue 7 (BB7). 

   In Chapter 6, the author prepared graft gels composed of various main chains by 

photo polymerization. By altering composition ratio of PTMC macromonomer, the 

swelling ratio and hydrogel morphology were controlled. The morphology of a 

sponge-like layer or thick skin layer was also controlled by the composition ratio of 

PTMC. In incorporation test, the hydrophobic domain formed by PTMC was shown to 

incorporate hydrophobic and amphiphilic molecules. But, low solubility BB7 was 

preferentially incorporated into hydrophobic domain. The incorporation rate depended 

on the composition ratio of PTMC segments.  

From results of Chapter 5 and 6, the graft gel having variable polarity showed useful 

functionality. This graft gel was expected the application for drug delivery carrier and 

molecular separation material for further developments in the future. 

   In this thesis, the author focused on amphiphilic graft copolymer and attempted to 

development the functional material by the novel polymer design containing PTMC. In 
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each chapter, the author designed, synthesized, and evaluated to different materials by 

driven force of oligo PTMC segment. As the results, the specific properties of diverse 

biomaterials formation such as colloid, membrane, and hydrogel found to be appropriate 

for use as biomaterials. Moreover, by selecting functional monomer as polymer 

backbone in terms of polymer design, the graft copolymer introducing oligo PTMC 

segment was expected to widely apply as more intelligent material. The author hopes 

that these polymer designs contribute to application for the intended use in the future. 
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