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ABSTRACT

The gamma-ray bursts (GRBs) are one of the most energetic phenomena in the uni-

verse. They radiate enormous energies of the order of 1051 ergs mainly in the form

of gamma-rays with the short duration, typically of ∼ 10 s. Although the radiation

is thought to be originated from the ultra-relativistic jets with Γ ≳ 100, where Γ is

the Lorentz factor of the jets, the radiation mechanism of gamma-rays is still under

debate.

In this thesis, we investigate the random walk process in relativistic flow and

construct an analytic expression for the effective optical depth in relativistic flow.

Then, we apply the theory to the thermal photons radiated from relativistic jet which

penetrates a stellar mantle of a massive star and results in the gamma-ray burst.

In the relativistic flow, photon trajectory is concentrated in the directions of the

flow velocity due to relativistic beaming effect. We show that, in the pure scattering

case, the number of scatterings is proportional to the size parameter ξ ≡ L/l0 if

the flow velocity β ≡ v/c satisfies β/Γ ≫ ξ−1, while it is proportional to ξ2 if

β/Γ ≪ ξ−1 where L and l0 are the size of the system in the observer frame and the

mean free path in the comoving frame, respectively. We also examine the photon

propagation in the scattering and absorptive medium. We find that, if the optical

depth for absorption τa is considerably smaller than the optical depth for scattering

τs (τa/τs ≪ 1) and the flow velocity satisfies β ≫
√
2τa/τs, the effective optical

depth is approximated by τ∗ ≃ τa(1 + β)/β. Furthermore, we perform Monte Carlo

simulations of radiative transfer and compare the results with the analytic expression

for the number of scattering. The analytic expression is consistent with the results of

the numerical simulations.

Therefore, we perform radiative transfer simulation for thermal radiation from

GRB jet. The structure of the jet is derived by performing relativistic hydrodynamic

simulation. The radiative transfer is calculated by postprocessing with a numerical

code based on Monte Carlo method, which takes into account where the observed

photons are produced in the jet and the cocoon. We find that the radiation from sub-

relativistic cocoon partially contributes to the spectrum at lower energies, although

the spectrum mainly consist of the radiation from ultra-relativistic jet. We compare

our results to the Band function and find that the synthesized spectrum around the

peak energy can be well fitted by the Band function, indicating that the thermal
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emission may be observed as a non-thermal Band function.
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CHAPTER 1

INTRODUCTION

In this chapter, we summarize the observations of gamma-ray bursts. Firstly, we

describe the history of the observations of gamma-ray burst from the discovery with

the Vela satellite, and then we summarize the observational features of gamma-ray

bursts.

1.1 Observational History of Gamma-Ray Bursts

Historically, GRBs were first discovered with the Vela satellite which was launched

by the United State of America for the purpose of military use. In 1969, Vela ob-

served the gamma-ray signals from outside of the Earth and the finding was reported

in 1973 (Klebesadel et al. 1973). After that, BATSE, which was a gamma-ray de-

tector equipped on the Compton Gamma-ray Observatory launched also by U.S.A,

detected a lot of events and found that the directions of GRBs are almost isotropically

distributed in the universe. Figure 1.1 shows the directions of 2704 GRBs.

The uniform distribution of GRBs indicates that they are originated from old stars

such as neutron stars in the Galactic halo or other galaxies with the cosmological

distances from our galaxy. This is because most of the luminous main sequence stars

in our galaxy locate in the disk and the ditribution of nearby galaxies have some

structures in the sky.

The problem whether the origin of GRBs is Galactic or cosmological distant galax-

ies was not clarified until the late 1990s. In 1997, Italian-Dutch X-ray satellite Beppo-

SAX discovered the X-ray emission following the prompt gamma-ray emission of GRB

970228 (Costa et al. 1997). This emission could be detected even several days after

the gamma-ray trigger and called the afterglow. After the discovery of the afterglow,

follow-up observations by ground-based optical telescopes are performed and the af-

terglow in optical band was also found (van Paradijs et al. 1997). The observations in

the optical afterglow enabled the astronomers to identify a host galaxy of GRBs and

it was confirmed that the GRBs occurs in the galaxies at the cosmological distance

from the Milky Way (e.g., Metzger et al. 1997; Kulkarni et al. 1998; Djorgovski et al.

1998).

On the other hand, it had been suggested that, if the GRBs have a cosmological
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Figure 1.1 Directions of 2704 GRBs observed by BATSE. (
http://gammaray.nsstc.nasa.gov/batse/grb/skymap/ )

origin, the non-thermal spectrum of gamma-ray emission was thought to be incon-

sistent with very high opacity for γγ absorption at the source, called ”compactness

problem” (Ruderman 1975). Nowadays, it is known that the compactness problem is

avoidable if the gamma-rays are emitted from ultra-relativistic outflows with Γ ≳ 100

where Γ is Lorentz factor of the outflow (see Section 1.3.1).

Furthermore, the cosmological distance of the origin of GRBs indicates that enor-

mous energies are released as the gamma-ray emissions. Assuming that the gamma-

rays are radiated isotropically, the released energies can be estimated as high as

Eγ,iso ∼ 1053 ergs for the typical GRB and Eγ,iso ∼ 1054 ergs for the most powerful

bursts. This extremely large energy is comparable to the rest mass energy of the Sun,

M⊙c
2 ∼ 2× 1054 ergs. However, in 1999, Harrison et al. (1999) found an achromatic

break in the light curve of the optical afterglow of GRB 990510 (Figure 1.2) and the

break indicates the existence of the edge of the outflow, which means that the outflow

is not isotropic but has a shape of jet with a finite opening angle of θ ∼ 5◦. Since

a half opening angle θjet corresponds to a solid angle of Ω = 2π(1 − cos(θjet), the

collimation-corrected released energies can be reduced to Eγ = (1− cos θjet)Eγ,iso and
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Figure 1.2 Optical light curve of GRB 990510. A break at t ∼ 1 days indicate that
the outflow has a shape of jet with a finite opening angle. (Harrison et al. 1999)
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Figure 1.3 Optical spectra of GRB 030329/SN 2003dh (Hjorth et al. 2003). The left
panel shows the evolution of the spectra and the right panel shows comparisons with
the spectra of SN 1998bw which is also GRB associated supernova.

Harrison et al. (1999) estimated the released energy of GRB 990510 as Eγ ∼ 1051 ergs

which is comparable to the kinetic energy of supernovae.

Although it had been known that GRBs occur in galaxies at cosmological distance,

the specific sources of GRBs were not clarified yet. However, in 1998, Beppo-SAX

observed the afterglow of GRB 980425 and soon after a supernova, named SN 1998bw,

was discovered at the same position of GRB 980425 (Galama et al. 1998). From

the coincidense, a connection between GRB and SN was suggested. SN 1998bw

was classified into Type Ic supernova but was more luminous than ordinal Type

Ic supernovae and have much broader spectral lines which indicates a very energetic

explosion. Iwamoto et al. (1998) constructed a model reproducing optical observations

of SN 1998bw and estimated its kinetic energy as Ekin ∼ 1052 erg which is one order

of magnitude higher than the kinetic energy of ordinal supernovae. Such unusually

energetic explosions have been called as hypernova. In addition, in 2003, high energy

transient explorer HETE-II detected GRB 030329 and soon follow-up observations of

the optical afterglow was performed (Hjorth et al. 2003). As a result, the redshift

of GRB 030329 was estimated as z = 0.17 and, surprisingly, it was found that the

spectrum of the optical afterglow of GRB 030329 evolved to the spectrum of a broad
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Figure 1.4 Distribution of the duration of gamma-ray emissions observed by BATSE.
T90 is a time duration in which 90% of the total energies are radiated. (Paciesas et al.
1999, http://gammaray.nsstc.nasa.gov/batse/grb/duration/)

line type Ic supernova SN 2003dh which is very similar to the optical spectrum of

SN 1998bw. Therefore, it was concluded that a GRB and broad line Type Ic SN have

a same origin, which is the core collapse of massive stars.

However, it should be noted that there are two types of GRBs distinguished by

their duration of the gamma-ray emissions. Figure 1.4 shows a distribution of the

duration of gamma-ray emissions observed by BATSE, which has double peakes at 0.1s

and 10s. This indicates the existence of two populations. GRBs with duration longer

than 2s is called long gamma-ray burst (long GRB) and GRBs with duration shorter

than 2s is called short gamma-ray burst (short GRB). All of the GRBs accompanying

SNe belong to long GRBs. It is widely believed that although long GRBs are related

to the core collapse of massive stars, short GRBs have another origins. One of the

possible candidates for the origin of short GRBs is merger of binary neutron stars.

Fox et al. (2005) observed the afterglow of GRB 050709, which is a short GRB, and

ruled out the existence of associated supernova component.
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Figure 1.5 Light curves of GRBs observed by BATSE. (Fishman & Meegan 1995)

1.2 Observational Properties of GRB Emissions

1.2.1 Prompt Emission

As mentioned in the previous section, there are two kinds of radiations from GRBs:

one is the initial prompt emission which is mainly in gamma-ray energy band and the

another is less energetic afterglow observed in X-ray, UV, optical, infrared, and radio

band. Here, we briefly describe the fundamental properties of the prompt emission.

Light curves of the prompt emission show strong time variabilities. Basically, they

rise very fast and then decay exponentially, and many bursts have some peaks in their

light curves. Figure (1.5) shows light curves of GRBs observed by BATSE. Since the

time scales of the variablities are very short, it can be expected that the size of the

origin of GRB is correspondinly small.

The energy spectrum of prompt emission has a non-thermal shape with a peak
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Figure 1.6 Time averaged spectrum of GRB 990123. Fitting paramters are Epeak =
720 keV, α = −0.6, and β = −3.11. (Briggs et al. 1999)

energy typically of ∼ 100 keV and it can be well fitted by an empirical function, called

Band function (Band et al. 1993). The Band function has two power-law indices at

high and low energy side. These are connected smoothly at a break energy Eb as

follows,

fBAND(E) = A×


(

E
100

)α
exp

[
−E(2+α)

Epeak

]
for E < Eb,[

(α−β)Epeak

100(2+α)

]α−β

exp(β − α)
(

E
100

)β
for E ≥ Eb,

(1.1)

where fBAND is a function of photon number and break energy Eb is related to Epeak

as

Eb = (α− β)
Epeak

2 + α
. (1.2)

This function consists of with four parameters: its absolute value A, low energy

photon index α, high energy photon index β, and peak energy in the spectral energy

distrubution Epeak. Figure 1.6 shows the energy spectrum of GRB 990123 observed

by BATSE. The fitted Band function is also shown in Figure 1.6. Figure 1.7 shows the
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Figure 1.7 The statics of the parameters by which the spectra of GRBs observed by
BATSE were fitted. (Kaneko et al. 2006)
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Figure 1.8 Distribution of the observed gamma-ray energy Eγ,iso and the kinetic energy
of the jet estimated by the afterglow. The gamma-ray energies are assumed to be
isotropic. Dotted lines indicate contours that the radiative efficiency of gamma-ray
is constant. (Racusin et al. 2011)

distributions of the fitting parameters for GRBs observed by BATSE (Kaneko et al.

2006). The typical values of α, β, and Epeak are -1, -2.5, and 300 keV, respectively.

Figure 1.8 shows the distribution of the observed gamma-ray energy Eγ,iso and the

kinetic energy of the jet estimated by the afterglow (Racusin et al. 2011). Here, the

gamma-ray energies are assumed to be isotropic. Dotted lines indicate contours that

the radiative efficiency of gamma-ray emission is constant. The radiative efficency is

defined as

η =
Eγ,iso

Eγ,iso + Ekin

, (1.3)

where Eγ,iso and Ekin are the isotropic gamma-ray energy and the kinetic energy of the

jet, respectively. Although some GRBs show relatively small efficiencies like η ∼ 1%,

GRBs with η > 50% also exist.

1.2.2 Afterglow

As mentioned in Sec 1.1, the prompt gamma-ray emissions are followd by less ener-

getic afterglows, which are observed in X-ray, UV, optical, infrared, and radio band.
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Figure 1.9 A schematic picture of X-ray afterglow. (Zhang et al. 2006)

Basically, the lightcurve of the afterglow is a combination of power-laws with different

indices and sometimes a flare occurs. In this section, we briefly describe the propeties

of X-ray afterglow.

We express the energy flux of X-ray afterglow as

F (ν, t) ∝ t−aν−b. (1.4)

The light curve of X-ray afterglow can be divided into 5 phases: (I) initial steep decay

phase at around 300 s < t1 < 500 s. The temporal index a1 is 3 < a1 < 5 and the

specral index b1 is 1 < b1 < 2. (II) relatively flat decay phase at 103 s < t2 < 104 s

which was found by Swift satellite, and the temporal and spectral indeces are 0.2 <

a2 < 0.8 and 0.7 < b2 < 1.2, respectively. (III) Normal decay phase at t3 < 105 s. The

temporal and spectral indeces are 1.1 < a3 < 1.7 and 0.7 < b3 < 1.2, respectively.

(IV) relatively steep decay phase at t4 > 105 s of the jet break. The temporal and

spectral indices are 2 < a3 < 3 and 0.7 < b3 < 1.2, respectively. (V) X-ray flares

sometimes occur at a period from immediately after the prompt emission to 105 s.

The energy of the flare ranges from a few % to several tens % of the energy of prompt

emission. The light curve of the X-ray flare behaves as (t − t0)
±αfl where t0 and αfl

are the reference time and the temporal index of 3 ≲ αfl ≲ 6, respectively. Figure 1.9

shows a schematic picture of the light curve of X-ray afterglow.
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1.3 Theoretical Framework of Gamma-ray Bursts

1.3.1 Compactness Problem

Since the energy spectrum of the prompt emission is non-thermal, the radiating region

is thought to be optically thin. This constrains the motion of the matter which emits

the gamma-ray photons (e.g., Lithwick & Sari 2001).

We consider a typical burst with energy flux F . If it occurs at a distance D from

us, its luminosity is estimated as

L = 4πD2F = 4× 1051
(

D

6000 Mpc

)2(
F

10−6 erg/cm2/s

)
erg/s, (1.5)

where we assume isotorpic radiation and, since the observed time scale of the variabil-

ity is as small as δT ∼ 10 ms, the size of the origin of the burst Ri can be constrained

as Ri < cδT ∼ 3000 km.

The observed spectrum consists of a lot of high energy photons. The high energy

photon (with energy E1) interact with a low energy photon (with E2) and creates

electron positron pair if the condition E1E2 > (mec
2)2 is satisfied. The number of

radiated photons is estimated as Nγ ∼ 4πD2FδT/Ēγ, where Ēγ is an typical photon

energy. If we denote the fraction of photons which can cause pair production by fp, the

optical depth for pair production at the source is calculated by τγγ ∼ fpNγσT/4πR
2
i ,

where σT is the Thomson cross section. Substituting Nγ into the above equation, τγγ

can be estimated as

τγγ ∼ fpσTFD2δT

ĒγR2
i

(1.6)

or

τγγ ∼ 1015fp

(
F

10−6 erg/cm2

)(
D

6000 Mpc

)2(
δT

10 ms

)−1

. (1.7)

Here, we assumed Ri ∼ cδT . This optical depth is extremely large and inconsistent

with the observed non-thermal spectrum (1.2.1). This is called the compactness

problem (e.g., Piran 2004; Lithwick & Sari 2001). The compactness problem can be

resolved if one consider ultla-relativistic motion of the emitting material toward the

observer.

Firstly, if the emitting matter moves with the Lorentz factor Γ, a photon ob-

served with the energy of Eobs in laboratory frame has the energy of E ′ ≃ Eobs/Γ in
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Figure 1.10 Radiations from front and back sides of a relativistically moving shell
with finite width. (Mészáros 2006)

the matter comoving frame. Thus, the condition for the pair prodcution E ′
1E

′
2 >

(mec
2)2 in the comoving frame is replaced by the condition in laboratory frame

E1 > Γ2(mec
2)2/E2 ∝ Γ2 and fp in laboratory frame decreases correspondingly be-

cause fp ∝
∫
E1

N(E)dE ∝ Eβ+1
1 ∝ Γ2(β+1). Here, β is the high energy photon index

N(E)dE ∝ EβdE.

Secondly, if the matter has a relativistic velocity, the estimation of the size from

time variability Ri ∼ cδT is replaced by Ri ∼ 2Γ2cδT . This can be understood

by considering radiations from front and back sides of a relativistically moving shell

with finite width. Let δT∗ and δT are the arrival time delay of two radiations in the

comoving and laboratory frame, respectively. Then these two values are related by

the following relation

δT = δT∗(1− βµ) ≃ δT∗(1/2Γ
2 + θ2/2) ≃ Ri/(2Γ

2c)(1 + Γ2θ2) ≃ Ri/(2Γ
2c). (1.8)

Here, we assumed that the emitting regions are inside light cone, that is θ ≪ Γ−1,

and Γ ≫ 1. Hence, the size of the region is estimated by Ri ∼ 2Γ2cδT instead of

Ri ∼ cδT .
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Therefore, the optical depth for the pair production is reduced to

τγγ ∼ fp
Γ−2(β+1)

σTFD2δT

ĒγR2
i

(1.9)

or

τγγ ∼ 1015

Γ−2β+2
fp

(
F

10−6 erg/cm2

)(
D

6000 Mpc

)2(
δT

10 ms

)2

. (1.10)

Substituting the observed typical value of β = −2.5 (1.2.1), if the matter moves

toward the observer with a Lorentz factor Γ > 1015/(−2β+2) ∼ 100, τγγ decreases to

τγγ ≲ 1 and the compactness problem can be resolved.

1.3.2 Relativistic Fireball Model

Thermodynamical Evolution of Fireball

GRBs are thought to be a phenomena that an enormous energy E ∼ 1051 erg is

released from an small region Ri ≲ 1000 km. In such a system, matter is thought to

be hot, called fireball, and the thermodynamical evolution of the fireball have been

studied by many authors (e.g., Paczynski 1986; Goodman 1986; Meszaros et al. 1993;

Piran et al. 1993) Here, for simplicity, we treat the fireball as a steady spherically

symmetric wind and discuss its thermodynamical evolution. The equations of mass

and energy conservation in such wind is written as (e.g., Blandford & McKee 1976)

4πr2ρΓc = Ṁ (1.11)

4πr2
(
ρc2 +

4

3
eint

)
Γ2c = Ė ∼ Liso, (1.12)

where Γ, ρ, and eint are the Lorentz factor, density, and internal energy density,

respectively. We assumed that the velocity is almost speed of light v ∼ c and used

the equation of state for relativistic particles p = eint/3, where p is a pressure. Ṁ and

Ė are the released mass and energy per unit time. From Equation (1.11), we obtain

constant r2ρΓ which leads to a relation ρ ∝ Γr2. Since the matter should be initially

radiation dominated, which means eint ∼ aT 4 ≫ ρc2, r2T 4Γ is constant. Since the

adiabatic index of radiation dominated matter is γa = 4/3, the temperature relates

with the density as T ∝ ργ−1 = ρ1/3 and the combination leads to r−2/3Γ2/3 ∝ const,

thus Γ ∝ r. The temperature and the density decreases as T ∝ r−1 and ρ ∝ r−3.
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However, once the matter expands and cools, it becomes matter dominated, eint ≪ ρc2

and, from Equation (1.11) and(1.12), the Lorentz factor reaches its maximum value

Γmax ∼ η ≡ Liso/Ṁc2 and remains constant

Γ(r) ∼

r/r0, for r < rs

η for r ≥ rs,
(1.13)

where rs ∼ r0η is a saturation radius above which the Lorentz factor is constant.

Above the saturation radius (r > rs), the temperature and density decreases as

T ∝ ρ1/3 ∝ r−2/3, that is

T

T0

=

(
ρ

ρ0

)1/3

≃

(r0/r) for r < rs,

η−1/3(r0/r)
2/3 for r > rs

(1.14)

where T0 and ρ0 are the initial temperature and density, respectively.

From 4πr20caT
4
0 ≃ Liso and 4πr20ρ0Γ0c = Ṁ ∼ Liso/ηc

2, the initial temperature

and the density are estimated as

kT0 ≃ 1.2

(
Liso

1052 erg/s

)1/4 ( r0
107 cm

)−1/2

MeV (1.15)

ρ0 ≃ 103
(

Liso

1052 erg/s

)( r0
107 cm

)−2 ( η

300

)−1

g/cm3. (1.16)

Photospheric Emission from Fireball

The initial temperature of the fireball is as high as kT0 ∼ 1 MeV. In such condition,

the production of a large number of electron-position pairs are expected and the

scatterings by these electron-positron pairs are thought to be a dominant opacity

source. However, if the temperature of the matter decreases as low as kT ∼ 20 keV,

the contributions from the pairs will be nagligible and the scatterings by the electrons

which is accompanied with the baryons becomes dominant (Paczynski 1986). The

transition radius rp above which e± pairs are negligible is

rp ≃ 6× 108
(

Liso

1052 erg/s

)1/4 ( r0
107 cm

)1/2
cm. (1.17)
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Above this radius, the optical depth for the electron scattering can be estimated by

τ ∼ neσTr/Γ, where ne is the electron number density and the assumption of ne = np

leads to ne ≃ (Liso/4πr
2mpc

3Γη). The photosphere is defined by the radius that the

optical depth equal to be unity. The dependence of the photospheric radius on the

outflow parameters is different whether it is located below or above the saturation

radius rs (Mészáros & Rees 2000). If the maximum Lorentz factor η is less than η∗

which is defined by

η∗ =

(
LisoσT

4πmpc3r0

)1/4

≃ 103
(

Liso

1052 erg/s

)1/4 ( r0
107 cm

)−1/4

, (1.18)

the photospheric radius is above rs. If we denote the photospheric radius for the

outflow with η < η∗ by r>ph, it can be written as

r>ph =
LisoσT

4πmpc3η3
≃ 4.3× 1011

(
Liso

1052 erg/s

)( η

300

)−3

cm. (1.19)

On the other hand, if the amount of the baryons in the outflow is small and the

maximum Lorentz factor exceed a critical value, that is η > η∗, the photospheric

radius for this case r<ph is located below the saturation radius and, since the Lorentz

factor evolves as Γ ∝ r is at r < rs, r
<
ph is calculated as

r<ph =

(
LisoσTr

2
0

4πmpc3η

)1/3

≃ 1010
(

Liso

1052 erg/s

)1/3 ( r0
107 cm

)2/3 ( η

1000

)−1/3

cm. (1.20)

If the photospheric radius locates below rp, e
± pairs make the photosphere and the

condition can be expressed in terms of η as η > ηp with

ηp ≃ 4× 106
(

Liso

1052 erg/s

)1/4 ( r0
107 cm

)1/2
. (1.21)

In this case, the mass ejection rate Ṁ is quite low

Ṁ ≤ 1.4× 10−9(Liso/10
52erg s−1)(r0/10

7cm) M⊙/s. (1.22)
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Next, we consider the emissions from the photosphere. Here, we assume the

photospheric emission as a blackbody radiation from the photosphere with a matter

temperature. If the photospheric radius locates above the saturation radius, i.e.,

rph > rs, for the case of η < η∗, the Lorentz factor at the photospheric radius Γph

is Γph = η. On the other hand, if η > η∗, the photospheric radius locates below the

saturation radius, i.e. rph < rs, and from Equation (1.20) the Γph depends on the

location of the photosphere and the maximum Lorentz factor as Γph ∝ rph ∝ η−1/3.

In the case of η > ηp, the photosphere is made by e± pairs and Γph depends on rp

but not on η, Γph = Γ(rp).

Since the radial dependence of the temperature at the photosphere is kTph ∝ r−1
ph

for rph < rs and kTph ∝ r
−2/3
ph for rph > rs, the observed temperature defined by

kT obs
ph = kTphΓph is calculated as

kT obs
ph

kT0

=

(rph/rs)
−2/3 = (η/η∗)

8/3, for η < η∗, rph > rs

1, for η > η∗, rph < rs.
(1.23)

From Equation (1.23), observed temperature kT obs
ph is equal to the initial temperature

kT0 for the case of η > η∗ (and hence rph < rs). The dependencies of observed

luminosity Lph are Lph ∝ r2phΓ
2(kTph)

4 ∝ const for rph < rs and Lph ∝ r
−2/3
ph for

rph > rs, that is

Lph

Liso

=

(r>ph/rs)
−2/3 = (η/η∗)

8/3, for η < η∗, rph > rs

1, for η > η∗, rph < rs
(1.24)

From Equation (1.24), if the amount of the baryons in the outflow is sufficiently small

to satisfy the condition η > η∗ ∼ 1000, the photospheric emission from the fireball can

establish the high efficiency of the radiation. However, if the amount of the baryons is

relatively large and the outflow has only the moderate value of the maximum Lorentz

factor, the the photospheric emission from the fireball has very low efficiency, e.g.

Lph/Liso ∼ 2 × 10−3 for the case of η ∼ 100. This is because that, if the maximum

Lorentz factor η is lower than the critical value η∗, the emission takes place above the

saturation radius where the initial thermal energy has been already converted into

the kinetic energy of the outflow.
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1.3.3 Internal Shock Model

In Section 1.3.2, we mentioned that the photospheric emission from fireball can be

emitted only with low efficiency Lph/Liso < 1% except for the case of very high

maximum Lorentz factor. On the other hand, observations of some bursts show very

high radiative efficiency of > 50%. In order to achieve such high radiative efficiency,

the bulk kinetic energy of the outflow should be dissipated and re-converted into the

random energy of the electrons.

Another proposed radiation mechanism is a synchrotron emission from the elec-

trons accelerated by the shock waves (e.g., Meszaros & Rees 1993; Rees & Meszaros

1994; Katz 1994). The shock wave naturally dissipate the bulk kinetic energy of the

jet into random energy of the electrons, and the random energy will be released from

the jet in the form of the radiation.

If there are some shells with different velocity in the outflow, these shells will

collide with each other and produce shock waves. The shock waves are called as

internal shocks. In addition, when the ejecta expands and runs into the external

medium, the medium will be accumulated ahead of the ejecta and the shock wave,

which is called external shocks, will be produced.

In particular, the internal shock model which explains the prompt emission with

the synchrotron emission emitted by the electrons accelerated at the internal shocks

have been actively studied by many papers (e.g., Rees & Meszaros 1994; Katz 1994;

Piran 2004, for review). The internal shock model together with the external shock

model for the afterglow (e.g., Meszaros & Rees 1993; Sari et al. 1998) is a the standard

scenario for GRBs. In this section, we describe the internal shock model. We also

discuss some problems on this model.

Radiative Efficiency

We consider a collision of two shells with different velocities and estimate the efficiency

of the energy conversion by the collision (Kobayashi et al. 1997; Katz 1997).

We denote the shell with a higher velocity by the subscript ”f”, e.g., Lorentz factor

of the faster shell is Γf , and the slower shell by the subscript ”s”. When the faster

shell catches up the slower shell, they collide and merge into a shell whose mass is the

sum of the two shells. The shell created in consequence of the merging of two shells

is denoted by the subscript ”m” (Figure 1.11). The conservation of the energy and
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Figure 1.11 A schematic picture of the collision of two shells.

the momentum during the merging is written as

mrΓr +msΓs = (mr +ms + E ′
int/c

2)Γm (1.25)

mr

√
Γ2
r − 1 +ms

√
Γ2
s − 1 = (mr +ms + E ′

int/c
2)
√

Γ2
m − 1, (1.26)

where E ′
int is a internal energy in the rest-frame of shell ”m” released by the collision.

Since we here consider the internal shock in a ultra relativistic flow, Γs and Γm are

expected to be much larger than unity, i.e., Γm > Γs ≫ 1. Since the released internal

energy by the collision in the observer frame is the change of the kinetic energy before

and after the collision, we have the following equation

Eint = mrc
2(Γr − Γm) +msc

2(Γs − Γm). (1.27)

From the Equation (1.27), the efficiency by which the kinetic energies are converted

into the internal energy ε ≡ Eint/(mrΓrc
2 +msΓsc

2) is calculated by

ε = 1− (mr +ms)Γm

mrΓr +msΓs

. (1.28)

If the Lorentz factor of the faster shell Γr is much larger than that of the slower shell

Γs, i.e., Γr ≫ Γs, and the masses of two shells are comparable, i.e., mr ∼ ms, then

the efficienfy can be high. For example, if Γr = 10Γs and mr = ms, the efficiency can

reaches ε ∼ 40%.
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Energy Spectrum

Next we consider the energy spectrum in the internal shock model.

The densities and the temperatures in the upstream and downstrem of a rela-

tivistic shock wave have following relations (e.g., Johnson & McKee 1971; McKee &

Colgate 1973)

n2 = (Γ21 + 3)n1 ≃ 4Γ21n1

e2 = (Γ21 − 1)n2mpc
2 ≃ Γ21n2mpc

2 ≃ 4Γ2
21n1mpc

2, (1.29)

where variables in the upstream and the downstream of the shock wave are expressed

by the subscripts ”1” and ”2”, respectively. A variable Γ21 is the relative Lorentz

factor between the upstream and the downstream, and if it is much larger than unity

Γ21 ≫ 1, the Lorentz factor of the shock surface Γsh is almost same as Γ21, i.e.,

Γsh ≃ Γ21. If the electrons and the magnetic field posses portions of the internal

energy in the downstrem with ϵe and ϵB, the energies posses by the electrons ee and

the magnetic field eB in the downstream are

ee ≡ ϵee2 ≃ 4Γ21ϵen1mpc
2 (1.30)

eB = B2/8π ≡ ϵBe2 ≃ 4Γ21ϵBn1mpc
2. (1.31)

We assume that ϵe, ϵB are constant during the burst.

We consider the synchrotron emission from an electron whose Lorentz factor is

γe. Since the characteristic frequency of the synchrotron emission is calculated by

ν = ℏeBγ2
e/mec (e.g., Rybicki & Lightman 1979), the emission is observed with

following characteristic frequency

(hν)obs =
ℏeB
mec

γ2
eΓ. (1.32)

It is widely known that the electrons accelerated at the strong shock wave by the

first order Fermi acceleration have a power-law distribution (e.g., Blandford & Eichler

1987). Thus we assume the distribution function of the electrons as

N(γe)dγe ∝ γ−p
e dγe for γe > γe,m, (1.33)
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Figure 1.12 A schematic picture of the spectrum from power-law distributed electrons.

where p is a power-law index which is predicted to be p > 2 by the shock acceleration

theory and γe,m is a minimum Lorentz factor only above which the electrons have

a power-law distribution. The following relation between γe and ee holds (e.g., Sari

et al. 1996)

γe,m =

(
p− 2

p− 1

)
ee

ξen2mec2
≃ ϵe

ξe

(
p− 2

p− 1

)
mp

me

Γ21, (1.34)

where ξe is the fraction of the accelerated electrons (Bykov & Meszaros 1996). If we

assume p = 2.5 (Sari et al. 1996), γe,m becomes γe,m ≃ 6× 103ϵe,−1ξe,−1Γ21.

Since the spectrum of the synchrotron emission from electrons with the power-law

distribution with index of p is also power-law with the index of −(p − 1)/2 (e.g.,

Rybicki & Lightman 1979), the spectral index is expected to be −(p − 1)/2 above

the frequency which corresponds to γe,m, i.e., above νm ≡ ℏeBγ2
e,mΓ/mec. On the

other hand, the spectral index below νm is determined by the low frequency part of

the synchrotron emission from one electron, which have an index of 1/3. Thus, the
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observed spectrum around νm is predicted to be

Fν ∝

ν1/3 for ν < νm,

ν−(p−1)/2 for ν > νm.
(1.35)

The observed peak energy can be estimated from Equation (1.31) (1.32), and (1.34)

with the parameters for the internal shock as

(hνm)obs ∼ 400
( ϵB
0.1

)1/2 ( ϵe
0.1

)2( ξe
0.1

)−2 ( ne

1012 cm−3

)1/2( Γ

300

)
keV, (1.36)

where we assume Γ21 ∼ 1. This peak energy is well consistent with the observational

typical value of the prompt emission (see Figure 1.7).

Problems of the Internal Shock Model

In the previous sections, we described the efficiency of energy conversion (∼ radiative

efficiency) and the radiation spectrum from the internal shocks. However, the inter-

nal shock model has some problems in both the radiative efficiency and the energy

spectrum.

If one consider a collision of two shells, the radiative efficiency can be reached as

high as ∼ 40% if the ratio of the Lorentz factor of two shells is ∼ 10 and the masses

of them is comparable. Howerver, the light curves of the prompt emission have very

rapid time variabilities, which indicates that there should be a lot of collisions of

shells in a bursts. The radiative efficiency in such a circumstance is estimated by the

sum of the energy conversions from kinetic energy into the internal energy

ϵ = 1− Σm
(f)
i γ

(f)
i

Σm
(i)
i γ

(i)
i

. (1.37)

Here, the sum is calculated for the entire shells. The superscribe (f) and (i) indicate

that the values are for the one after and before the collisions, respectively.

Kobayashi et al. (1997) calculated the radiative efficiency with Equation (1.37)

for various parameters. Figure 1.13 shows a result of the calculation with 500 shells.

From their results, if the energies possessed by the all shells are the same and the

ratio of largest and smallest Lorentz factors of the shells γmax/γmin is very large, e.g.,
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Figure 1.13 The efficiency of the energy conversion (∼ radiative efficiency) by the
collisions of 500 shells as a function of the ratio of largest and smallest Lorentz factors
of the shells calculated by Kobayashi et al. (1997). The energy possessed by the shells
is assumed to be the same and the smallest Lorentz factor of the shells is fixed to be
γmin = 10.
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γmax/γmin > 103, the efficiency can reache ∼ 30%. However, if the ratio of the largest

and the smallest Lorentz factors is not so large, e.g., γmax/γmin < 10, the efficiency

will be ϵ < 10%. On the other hand, as mentioned in Section 1.2.1, some bursts shows

the radiative efficiencies of ϵ > 50% and it is difficult to explain such high radiative

efficiencies with the internal shock model.

In addition, we mentioned that the low energy spectral index from power-law

distributed electrons is 1/3 which corresponds to a low energy photon index of -2/3.

If one consider the emission in more detail, harder spectral index at the low energy

side is possible. However, the low energy spectral index harder than 1/3 cannot be

explained by the optically thin synchrotron emission. On the other hand, a portion

of the bursts actually exhibit such hard low energy spectral index and this is called

as ”line of death problem” of the prompt emission (Preece et al. 1998).

1.3.4 Photospheric Model

In the previous section, we discussed the problems of the internal shock model. In

this section, we describe an another model which, called photspheric model, which is

recentlly attracts attensions from both theoretical and observational view.

For example, Ryde et al. (2010) argued that the spectrum of GRB 090902B can

be well fitted by a quasi-blackbody with a characteristic temperature of ∼ 290 keV.

Moreover, it has been reported that some bursts exhibit a thermal component on a

usual non-thermal component (e.g., Guiriec et al. 2011; Axelsson et al. 2012). These

observations indicate that the thermal component may appear in the spectrum as a

blackbody spectrum, aside from its dominance in the spectrum. However, it is not

clear whether the thermal emission always appears in the spectrum as a blackbody

like spectrum or not. Themal emission may appear with a non-thermal behavior by

some mechanisms (see below). Therefore, investigation of the thermal radiation from

GRB jets is crucial to understand the radiation mechanism of GRBs.

As mentioned in Section 1.3.2, photospheric emission from an adiabatically ex-

panding fireball have only a small radiative efficiency, unless the Lorentz factor of the

fireball is larger than a critical value η, i.e., η > η∗ (see Equation (1.24)). However, if

the kinetic energy of the flow is disippated by some sort of mechanism, some fraction

of the kinetic energy ϵd < 1 will be re-converted into thermal energy. In this case,

the radiation energy, which decreases as Lγ ∝ (r/rs)
−2/3 without dissipation, will in-
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crease as Lγ ∼ ϵd > L0(r/rs)
−2/3 (Rees & Mészáros 2005). Moreover, the high energy

power-law tail, which does not exist on the spectrum of thermal emission from adi-

abatically expanding fireball, could appear due to the inverse Compton scatterings

by the non-thermal electrons energized by the dissipation, which may explain the

observed high energy slope of GRB spectrum (see Figure 1.6). Some mechanisms of

the dissipation process have been suggested so far. For example, Beloborodov (2010)

suggested that free neutrons possibly contained in the jet might have a crucial role

for the prompt emission. They argued that the neutrons will collide with protons

component below the photosphere, which disspates the bulk kinetic energy into the

non-thermal, high-energy electron energies via inelastic nuclear scatterings between

neutrons and protons. Giannios (2006, 2008, 2012) investigated the spectrum of ther-

mal emission from magnetized outflow assuming that the magnetic field energy is

gradually dissipated via magnetic reconnection and argued that such mechanism can

explain the observed spectrum.

On the other hand, geometrical structures of the jet must be considered in the

calculations of thermal emission since GRB outflows have jet-like structures with

finite opening angles in reality. For example, Lundman et al. (2013) investigated

photospheric emission from a conical jet whose Lorentz factor decreases with the angle

from the jet axis. They suggested that the low energy part of GRB spectrum could

be the emission from outer edge of the jet. Ito et al. (2013) investigated photospheric

emission from stratified jet which consists of a highly relativistic spine region and

the surrounding less relativistic sheath region. They suggested that, when a photon

intersects the boundary between spine and sheath regions, it gains energies via the

electron scatterings and the high energy tail of the observed spectrum can be explained

by the photons which energized by the such mechanism.

Photospheric emission from the relativistic jet from a massive star with realistic

structures calculated with the relativistic multi-dimensional hydrodynamics simula-

tions have also been investigated by some authors (Lazzati et al. 2009, 2011; Nagakura

et al. 2011; Mizuta et al. 2011). Especially, Lazzati et al. (2009) suggested that shock

wave generated by the interaction between the jet and the star dissipates the bulk

kinetic energy of the jet into the internal energy and it makes the photospheric emis-

sion highly efficient (η ∼ 50%). They calculated thermal emission just by superposing

blabkbody emissions from the photosphere. However, the observed photons should be

produced in inner regions with τs ≫ 1 (Beloborodov 2013; Vurm et al. 2013) since the



25

radiation and absorption processes are inefficient near the photosphere with τs = 1,

where τs is a optical depth for electron scattering, due to the low plasma density.

The produced photons propagate through the jet and cocoon which have complicated

structure. Thus, a radiative transfer calculation that properly evaluate the photon

production site is necessary to investigate the thermal radiation from GRB jets.



CHAPTER 2

METHODS FOR NUMERICAL CALCULATIONS

2.1 Monte-Carlo Radiative Transfer Code

Here, we descibe the numerical code for a relativistic radiative transfer calculation.

The code is based on the Monte-Carlo method and calculate photon transfer with

random numbers. The special relativistic effects are fully taken into account in the

code.

2.1.1 Photon Transfer with Monte-Carlo Method

We describe the method to treat the photon transfer in uniform medium which has a

relativistic velocity in the laboratory frame. Of course, the structure of GRB jets are

not uniform but if we consider sufficiently small regions the plasma can be treated as

a uniform flow.

We suppose that the electrons in the plasma has a velocity βe in the laboratory

frame, which is calculated with considering both bulk fluid motion and thermal motion

of the electron. The thermal motion of the electron is determined with random

numbers as to obey relativistic Maxwell distribution and is assumed to be isotropic

in fluid comoving frame. The number density of electrons in the laboratory frame is

denoted by ne.

The optical depth for a photon during a travel of small distance δs is δτ = Γe(1−
βe cos θ)neσδs, where Γe is the Lorentz factor of the electron, Γe = 1/

√
1− β2

e , and θ

is the angle between the directions of electron motion and the propagation of photon

in laboratory frame. The probability Ps that a photon scatters on δτ is calculated by

Ps = 1− e−δτ . (2.1)

The occurrence of scattering during the travels of δs is evaluated with a uniform

random number R1 with a range of 0-1. If R1 > Ps, the scattering does not occur and

the photon freely travels the distance δs. On the other hand, if R1 < Ps, the photon

is scattered by an electron at a distance ls < δs, which is calculated with R1 as

ls =
− ln (1−R1)

Γe(1− βe cos θ)neσ
. (2.2)

26
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We use the Klein-Nishina total cross section σKN for σ, which is calculated by

σKN = σT
3

4

[
1 + x

x3

{
2x(1 + x)

1 + 2x
− ln(1 + 2x)

}
+

1

2x
ln(1 + 2x)− 1 + 3x

(1 + 2x)2

]
, (2.3)

where σT and x are the total cross section for Thomson scattering and the energy of a

photon in electron restframe divided by the electron rest mass energy, x = hν ′/mec
2.

2.1.2 Treatment of Scatterings

If a scattering occured, the energy and the propagation direction of a photon is altered

by the scattering. We describe the way to calculate the 4-momentum of a photon

after the scattering.

The scatterings are calculated in the electron restframe since the treatment of the

scatterings is much easier than that in the laboratory frame. We Lorentz-transform

the 4-momentum of a photon before scattering in the laboratory frame into the elec-

tron restframe, calculate the scattering in the electron restframe, and then we get the

4-momentum of the photon after the scattering in the laboratory frame by Lorentz-

transform the 4-momentum into the laboratory frame again.

We consider the frame in which the electron is at rest at the origin of the coordinate

and the photon propagates toward z’-direction before the scattering. The photon has

the 4-momentum p′µi before the scattering and p′µf after the scattering. If we denote

the energy of the photons before and after the scattering in this frame as e′i and e′f ,

p′µi and p′µf is written as

p′µi =
e′i
c


1

0

0

1

 , p′µf =
e′f
c


1

sinθ′fcosϕ
′
f

sinθ′fsinϕ
′
f

cosθ′f

 , (2.4)

where θ′f and ϕ′
f are the zenith and azimuthal angles with which the potons propagate

after the scattering in this frame (Figure 2.1). The three variables of e′i, e
′
f , and θ′f

are related each other with these equations,

e′f =
e′i

1 +
e′i

mec2
(1− cos θ′f)

(2.5)
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Figure 2.1 Schematic picture.

and
dσKN

dΩ
=

r20
2

e′2i
e′2f

(
e′f
e′i

+
e′i
e′f

− sin2 θ′f

)
, (2.6)

where r0 is the classical electron radius and we adopt the Klein-Nishina differential

cross section. If we eliminate e′f in Equation (2.6) by substituting Equation (2.5), we

can express dσKN/dΩ as functions of e′i and θ′f . Since e′i is given, we can obtain θ′f
as to obey dσKN/dΩ with random numbers. We can also obtain ϕ′

f with a uniform

random number between 0 to 2π. Then, we calculate e′f from Equation (2.5) and get

p′µf from Equation (2.4).

The above procedure to calculate the 4-momentum of a photon after a scattering

is considered in the coordinate system in which the photon propagate toward z’-

direction before the scattering. If the photon has a propagation direction with θ and

ϕ in the electron restframe, we get the 4-momentum of the photon after the scattering

by rotating p′µf by θ and ϕ.
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Figure 2.2 The spatial distribution of the injected photons as a function of τT/τ0.

2.1.3 Test Calculations

Here, we tests the numerical code by calculations of thermal Comptonization in a

spherical hot cloud which has a constant temperature and density. An analytic for-

mula of the energy spectrum of the radiation from such hot spherical cloud have been

derived in Sunyaev & Titarchuk (1980).

In the calculations, the cloud has a radius R, electron temperature Te, and electron

number density ne. The Thomson optical depth of the cloud is defined by τ0 ≡ neσTR.

The photons with energies much smaller than the electron thermal energy, i.e., hν0 =

0.1eV ≪ kTe are injected with the spatial distribution function ϕ(τT) defined by

ϕ(τT) =
τ0
πτT

sin
πτT
τ0

, (2.7)

where τT is the Thomson optical depth measured from the center of the cloud (Figure

2.2).

The analytical solution for this problem for hν ≫ hν0 is written as

F (x) = Ax3e−3

∫ ∞

0

tα−1e−t

(
1 +

t

x

)α+3

dt, (2.8)
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Figure 2.3 Results of the test calculations of Monte-Carlo code. The results repre-
sented by dots are compared with the analytic solutions (Eq. 2.8).

where x is the photon energy devided by the electron thermal energy x ≡ hν/kTe, A

is a normalization factor, and α is

α =

(
9

4
+ γ

)1/2

− 3

2
, γ =

π2mec
2

3(τ0 +
2
3
)2kTe

. (2.9)

The spectrum has a shape of a power-law with the index of α at x ≪ 1. Since the

Thomson cross section is used for the differential and total scattering cross sections

in the derivation of the analytical formula, we also use the Thomson cross section in

the test calculations of Monte-Carlo radiative transfer code.

Figure 2.3 shows the results of the calculations with the clouds whose Thomson

optical depths are 5, 7, and 10. The analytic solutions (Eq. 2.8) are also shown

in Figure 2.3. It can be seen that there is good agreement between the results of

Monte-Carlo calculations and the analytic solutions.
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2.2 Special Relativistic Hydrodynamics Code

We calculate the structure of the relativistic jet from massive progenitor star by a

relativistic hydrodynamics simulation (Chapter 4). In this section, we describe a

multi-dimensional special relativistic hydrodynamics code (Tominaga 2009) used for

the hydrodynamics simulation. We apply the unit system that the speed of light

equal to unity, i.e., c = 1, in this section.

2.2.1 Basic Equations

The equations of special relativistic hydrodynamics can be written by a fluid four-

velocity uµ and an energy momentum tensor (Marti & Muller 1994). Here, we express

the equations with following conserved quantities: relativistic rest-mass density D,

the i-th component of momentum density Si, and energy density τ defined by

D ≡ ρΓ, (2.10)

Si ≡ ρhΓ2vi, (2.11)

τ ≡ ρhΓ2 − p− ρΓ, (2.12)

where ρ is the fluid rest-frame density, p is the pressure, and h is the specific enthalpy

which is defined by

h = 1 + ε+
p

ρ
. (2.13)

With these quantities, the equations of relativistic hydrodynamics with newtonian

gravity in two-dimensions (assuming axisymmetry) are approximately expressed as

(Tominaga 2009)

∂D

∂t
+

1

r2
∂(r2Dvr)

∂r
+

1

r sin θ

∂(sin θDvθ)

∂θ
= 0, (2.14)

∂Sr

∂t
+

1

r2
∂{r2(Srvr + p)}

∂r
+

1

r sin θ

∂(sin θSrvθ)

∂θ
=

2p

r
+

Sθvθ
r

+ grρ, (2.15)

∂Sθ

∂t
+

1

r2
∂(r2Sθvr)

∂r
+

1

r sin θ

∂{sin θ(Sθvθ + p)}
∂θ

= −Sθvr
r

+
p

r
cot θ + gθρ, (2.16)

∂τ

∂t
+

1

r2
∂{r2(Sr −Dvr)}

∂r
+

1

r sin θ

∂{sin θ(Sθ −Dvθ)}
∂θ

= (grvr + gθvθ)ρ, (2.17)

where gr and gθ are the radial and the angular components of graviational acceleration,
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respectively.

We use a special relativistic hydrodynamics code with Marquina’s flux formula

(Donat et al. 1998) and with a conversion method from the observer frame to the fluid

rest frame (Mart́ı & Müller 1996). The third-order Runge-Kutta method developed

by Shu & Osher (1988) is applied for the time integration and the second-order

piecewise hyperbolic method (PHM) developed by Marquina et al. (1992) is applied

for the spatial interpolation. The contributions from self-gravity is taken into account

with the use of a Poisson equation solver (Hachisu 1986).

2.2.2 Equation of State

We adopt an equation of state for relativistic particles, i.e., eint = p/(γ − 1) with

γ = 4/3, where eint and γ are the rest-frame internal energy and the adiabatic index,

respectively, since the fluid is radiation dominated in the environment we consider in

this thesis. Temperature T is derived taking into account both the radiation and the

e+e− pairs by following equation (e.g., Freiburghaus et al. 1999):

eint = aT 4

(
1 +

7

4

T 2
9

T 2
9 + 5.3

)
, (2.18)

where a = 7.57× 10−15 erg cm−3 K−4 is the radiation constant and T9 = T/(109 K).



CHAPTER 3

RANDOM WALKS OF PHOTONS IN RELATIVISTIC

FLOW

3.1 Overview

Relativistic flows or jets are important phenomena in many astrophysical objects, such

as gamma-ray bursts (GRBs) and active galactic nuclei (AGNs). It is widely accepted

that most of high-energy emission from these objects arises from the relativistic jets.

However, their radiation mechanism is not fully understood. In particular, recent ob-

servations of GRBs have indicated the existence of thermal radiation in the spectrum

of the prompt emission, which casts a question to standard emission models invoking

synchrotron emission.

As mentioned in Section 1.3.4, to study the thermal radiation, treatment of the

photosphere needs careful consideration. Lazzati et al. (2009, 2011); Mizuta et al.

(2011); Nagakura et al. (2011) performed the hydrodynamical simulations of relativis-

tic jet and calculated the thermal radiation assuming that the photons are emitted at

the photosphere which is defined by the optical depth for electron scattering τs = 1.

However, the observed photons should be produced in more inner regions with τs ≫ 1

(e.g., Beloborodov 2013) since the radiation and absorption processes are very inef-

ficient near the photosphere due to the low plasma density. The produced photons

propagate through the jet and cocoon which have complicated structure. Thus, radia-

tive transfer calculation of the propagating photons properly evaluating the photon

production site is necessary to investigate the thermal radiation from GRB jets.

The photon production site can be estimated by the effective optical depth τ∗ (e.g.,

Rybicki & Lightman 1979). However, the expression derived in Rybicki & Lightman

(1979) is based on an assumption that each scatterings is isotropic in observer frame.

The assumption does not strictly hold in any moving media because the photon

propagation is concentrated to the direction of the flow due to the beaming effect in

the observer frame (Figure 3.1).

In this chapter, we construct an expression for the effective optical depth consid-

ering the random walk process in the relativistic flow. In Section 3.2, we analytically

investigate the random walk process in relativistic flow and present the expression

for the effective optical depth. In Section 3.2.3, we demonstrate that the number of

33



34

���

���

�

�

��

�

�

��

�

�

��

������

��� �

�

�

��

�

�

��

�

�

��

Figure 3.1 Schematic pictures of photon propagation in the jet with the velocity
v ≪ c (left) and v ∼ c (right). When v ≪ c, the scatterings of the photons are
approximately isotropic in the observer frame and the surface of τ∗ = 1 is located
far from the surface of τa = 1, where τa is an optical depth in the absence of the
scatterings. When v ∼ c, the photons are concentrate to the direction of the flow.
Thus, the surface of τ∗ = 1 is located close to the surface of τa = 1.
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scatterings obtained by the analytic expression agrees with that derived by Monte

Carlo simulations. Finally, summary and discussions are presented in Section 3.3.

3.2 Analytic expression of random walks in relativistic flow

In this section, we extend the argument for the random walk process shown in Ry-

bicki & Lightman (1979) to the relativistic flow. For simplicity, we assume that the

scatterings are isotropic and elastic in the electron rest frame.

3.2.1 Pure scattering

We first consider purely scattering medium with uniform opacity in which photons

are scattered N times. The path of the photons between i-1th and ith scattering

is denoted by ri. The net displacement of the photon after N scatterings is R =

r1 + r2 + · · ·+ rN . In order to derive the average net displacement of photons l∗, we

first take the square of R and then average it,

l2∗ ≡ ⟨R2⟩ =
N∑
i=1

⟨r2i ⟩+
N∑
i,j
i̸=j

⟨ri · rj⟩, (3.1)

where the angle bracket indicates the average for all photons.

If the medium is at rest relative to an observer, the second term in right hand

side of equation (3.1) vanishes due to the front-back symmetry of the scatterings

and only the first term contributes to l∗. In this case, the first term is calculated as

N⟨r2⟩ where r2 is the expected value of the square of the mean free path. Since the

probability that a photon travels a distance x is exp(−x/l)/l, where l is the mean

free path of the photon, r2 can be calculated as

r2 = l−1

∫ ∞

0

x2 exp(−x/l)dx = 2l2. (3.2)

Therefore, since l is the same as the mean free path in the comoving frame l0 for the

static medium and the mean free path is the same for all photons, l2∗ = 2N⟨l2⟩ =

2Nl20.
1

1This is different from the one shown in the Rybicki & Lightman (1979) by the factor of 2. The
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The number of scatterings required for a photon to escape a medium which has

a finite width L0 in the comoving frame is N = (L0/l0)
2/2 = τ 20 /2, where τ0 is the

optical depth of the medium, and this is Lorentz invariant. However, the calculation

of the mean number of scatterings of the photons propagating the distance L in

the observer frame is more complicated because the distances in the two frames are

different and the origin of photon production moves in the observer frame.

The radius is usually measured in the observer frame especially when one performs

the hydrodynamical simulations and when the emission radius is observationally mea-

sured. Thus, it is useful to construct an expression in the observer frame to describe

the diffusion of photons. Therefore, we consider mean number of scatterings while

the photons propagate a distance L in the observer frame.

If the medium has a relativistic speed, the second term in right hand side of

Equation (3.1) remains because the photons concentrate in the velocity directions

of the medium due to relativistic beaming effect. Therefore, the average of scalar

products of each path have a non-zero value in the observer frame. Moreover, the

average for the first term must take into account the dependence on the angle between

the directions of the photon propagation and the flow velocity because the mean free

path is angle dependent in the relativistic flow. Thus, in order to treat the random

walk process in relativistic flow, we need to estimate both ⟨r2i ⟩ and ⟨ri ·rj⟩ with taking

into account the relativistic effect.

The mean free path of a photon in the observer frame is given as l = l0/Γ(1− β cos θ)

(Abramowicz et al. 1991), where, Γ, β, and θ are fluid Lorentz factor, fluid velocity

in unit of speed of light, and the angle between the directions of photon propagation

and fluid velocity, respectively. We average l2 integrating in the comoving frame as

follows2

⟨l2⟩ = l20
4πΓ2

∫ 2π

0

dϕ′
∫ π

0

sin θ′dθ′(1− β cos θ)−2, (3.3)

where the values measured in the comoving frame are denoted with prime. Using the

relation between the angles in the observer frame and the comoving frame, that is

difference comes from that the first term in Eq. (3.1) is estimated approximately as Nl2 in Rybicki

& Lightman (1979) but, in this thesis, we calculate the term precisely considering the expected value

of the square of the mean free path.
2The integration can also be done in the observer frame with weighting by distribution of the

photon rays resulted from the beaming effect.
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cos θ = (β + cos θ′)/(1 + β cos θ′), we obtain

⟨l2⟩ = Γ2(β2 + 3)

3
l20, (3.4)

and the first term in Equation (3.1) is calculated by 2N⟨l2⟩.
The scalar product of two paths is ri·rj = lilj(sin θi cosϕi sin θj cosϕj+sin θi sinϕi sin θj sinϕj+

cos θi cos θj). If we set the polar axis to the direction of the photon propagation, the

azimuthal angle ϕ is identical in both frames. Thus only the third term in the bracket

contributes the average and we obtain

⟨ri · rj⟩ =
1

(4π)2

∫
dΩ′

i

∫
dΩ′

j lilj cos θi cos θj

= (Γβ)2l20. (3.5)

Substituting the equation (3.4) and (3.5) into equation (3.1), we obtain

l2∗ = N
2

3
Γ2(β2 + 3)l20 +N(N − 1)(Γβ)2l20. (3.6)

If we set l∗ = L, N corresponds to the mean number of scatterings during the photons

propagation of the net distance L in the observer frame. This leads to a quadratic

equation for N as

(Γβ)2N2 + Γ2(2− β2

3
)N − ξ2 = 0, (3.7)

where ξ ≡ L/l0 is the size parameter. If the medium is static, ξ corresponds to the

optical depth of the medium. However, in general, ξ does not correspond to the

optical depth because it is defined by the size of the medium in the observer frame,

L, and the mean free path of a photon in the comoving frame, l0.
3 We employ ξ as

the parameter to parametrize the distance in the observer frame. We can derive N

by solving Equation (3.7) as

N =
1

2a
(
√
b2 + 4aξ2 − b), (3.8)

where a = (Γβ)2 and b = Γ2(2− β2/3).

We derive important indications from equation (3.8) as follows: When ξ2 ≪ b2/4a,

3Since the mean free path in the observer frame depends on the angle between the direction of

photon propagation and the flow velocity, we define ξ with L and l0.
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which approximately means β/Γ ≪ ξ−1, N reduces to ξ2/b and N ≃ ξ2/2 for non-

relativistic flow4. However, if ξ2 ≫ b2/4a, which means β/Γ ≫ ξ−1, N becomes N ≃
ξ/
√
2a = ξ/

√
2Γβ. Thus, when the beaming is effective and the medium is sufficiently

optically thick, N is proportional to ξ with the factor which corresponds to the

reduction of the optical depth for relativistic effect. This is because photons propagate

approximately straight toward the outside and the number of target electrons during

the propagation is proportional to L ∝ ξ.

It is noted that the ξ is calculated by l0 which is mean free path in the comoving

frame. Equation (3.8) also can be expressed with the optical depth τ = Γ(1−β cosΘ)ξ

instead of ξ as

N =
1

2a

(√
b2 +

4aτ 2

Γ2(1− β cosΘ)2
− b

)
, (3.9)

where Θ is the angle between the directions along which the optical depth is measured

and the flow velocity.

3.2.2 Scattering and absorption

Next, we consider a photon transfer in a medium involving scattering and absorption

process. The mean free path of a photon in the comoving frame is

l0 =
1

α0 + σ0

, (3.10)

where α0 and σ0 are absorption and scattering coefficient in the comoving frame,

respectively. The probability that a free path ends with a true absorption is

ϵ =
α0

α0 + σ0

. (3.11)

If we assume that a photon is absorbed after N scatterings, the average number of

scatterings N can be related to the ϵ by N = 1/ϵ. Substituting this relation and

equations (3.10) and (3.11) into equation (3.6), we obtain l∗ as the functions of α0

and σ0:

l2∗ =

{
2

3
Γ2(β2 + 3) + (Γβ)2

σ0

α0

}
1

α0(α0 + σ0)
. (3.12)

4 This is also different from the one shown in the Rybicki & Lightman (1979), N ≃ ξ2 = τ20 for

the static medium, by the factor of 1/2 for the reason argued in Footnote 1.
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Table 3.1. Approximate forms of effective optical depth τ∗

β β ≪
√
2τa/τs

√
2τa/τs ≪ β ≪ 1 β ∼ 1

τ∗
√
τaτs/2 τa/β 2τa

Note. — The top and bottom lines represent
the ranges of the velocity β and approximated
forms of effective optical depth τ∗ in the ranges
of β, respectively.

Introducing the optical depth for absorption and scattering in the observer frame

as τa = Γ(1 − β cosΘ)α0L and τs = Γ(1 − β cosΘ)σ0L, respectively, the effective

optical depth τ∗ ≡ L/l∗ becomes

τ∗ =

{
2

3
Γ2(β2 + 3) + (Γβ)2

τs
τa

}−1/2
√

τa(τa + τs)

Γ(1− β cosΘ)
. (3.13)

In the non-relativistic limit, equation (3.13) reduces to τ∗ =
√
τa(τa + τs)/2, which

is consistent with the effective optical depth in the static medium shown in Rybicki

& Lightman (1979) except for the factor of 1/
√
2 (see Footnotes 1 and 4).

Here, we consider scattering dominant case, i.e., τs ≫ τa, which is the case in

the GRB jets and cocoon. In this case, the behavior of τ∗ depends on the relation

between β and τa/τs. If β ≪
√
2τa/τs (≪ 1), τ∗ becomes τ∗ ≃

√
τaτs/2. On the other

hand, if β ≫
√

2τa/τs, τ∗ is approximated by

τ∗ ≃
τa

Γ2β(1− β cosΘ)
. (3.14)

If we calculate the optical depth along the velocity direction, i.e., Θ = 0,

τ∗ ≃
1 + β

β
τa. (3.15)

This can be approximated as

τ∗ ≃
τa
β

≫ τa, (3.16)
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for the non-relativistic flow and

τ∗ ≃ 2τa, (3.17)

for the relativistic flow. Therefore, the dependence of τ∗ on τa is different for β ≪√
2τa/τs and β ≫

√
2τa/τs. The effective optical depth τ∗ is proportional to τa when

β ≫
√
2τa/τs for the same reason that the number of scatterings is proportional

to ξ when β/Γ ≫ ξ−1 in the pure scattering case as argued in Section 3.2.1. We

summarize these approximated forms of τ∗ for various ranges of β in Table 3.1.

The effective optical depth defines the photon production site as τ∗ = 1. From

Equation (3.16), τ∗ is much larger than τa = 1 as long as β ≪ 1 even for β ≫
√
2τa/τs.

This indicates that the photon production site in the flow with β ≪ 1 is located at

much outer region than the surface of τa = 1 as illustrated at the left of Figure 3.1.

On the other hand, when the flow has relativistic velocity, τ∗ differs from τa by only

the factor of 2 and the photon production site is located close to the surface of τa = 1

as illustrated at the right of Figure 3.1.

It should be noted that, even if the flow is non-relativistic, τ∗ departures from the

one for the static medium as long as the conditions of τs ≫ τa and β ≫
√
2τa/τs are

satisfied. This is because that a large number of scatterings makes the effect apparent

even if the relativistic beaming has only a small effect at each scattering.

3.2.3 Comparisons with Numerical Simulations

In order to confirm the analytic arguments in Section 3.2, we perform radiative trans-

fer simulations with the Monte Carlo method for the photons scattered in the rel-

ativistic flow. The simulations are performed with a Monte-Carlo radiative tranfer

code described in Section 2.1. We compare the mean number of scatterings ⟨N⟩ with
Equation (3.8).

We consider a uniform flow with a velocity β and the electron number density ne

of 10−10/σT cm−3, where σT is Thomson scattering cross section. The flow velocity

is parallel to z direction. Photons are created at the origin of the coordinate with

an energy of Eph = 0.1 eV, which is set as to avoid the Klein-Nishina effect, in the

comoving frame. We calculate the mean number of scatterings ⟨N⟩ while the photons
travel a net distance L which ranges from 1011 to 1014 cm in the observer frame,

so that the corresponding ξ = neσTL ranges from 10 to 104. p Since our interests

in this thesis is the influence of the fluid bulk motion on the number of scatterings,
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Figure 3.2 The mean number of scatterings ⟨N⟩ for the models with Γβ = 10−3

(crosses), 10−2 (triangles), 10−1 (asterisks), 1 (squares), 10 (diamonds), and 100 (cir-
cles). The lines show the analytic expressions, equation (3.8), for the models denoted
in the figure.

the temperature of the medium is set to be very low, i.e., kT = 1eV, to avoid that

the thermal motion of electrons affect the number of scatterings. We investigate non-

relativistic and relativistic velocity of the medium with products of the Lorentz factor

and the velocity Γβ of 10−3, 10−2, 10−1, 1, 10, and 102.

Figure 3.2 shows the mean number of scatterings ⟨N⟩ of 6× 103 photons for the

models with Γβ = 10−3, 10−2, 10−1, 1 and 6 × 104 photons for the models with

Γβ = 10 and 100. The lines show the analytic expressions derived in the previous

section with Γβ = 10−3, 10−2, 10−1, 1, 10 and 100 (Eq. (3.8)). This demonstrates

that the analytic expressions are excellently consistent with the results of numerical

simulations, except at ⟨N⟩ ∼ 1. The difference at the region comes from the fact that

a considerable number of photons do not experience any scatterings in this region,

although the equation (3.8) is obtained assuming all the photons undergo more than

one scatterings.

The dependencies of ⟨N⟩ on ξ are as follows: In the model with Γβ = 10−3, ⟨N⟩
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is proportional to ξ2 for ξ < 103 ≃ β−1 and to ξ for ξ > 103. In the model with

Γβ = 10−2, ⟨N⟩ is proportional to ξ2 for ξ < 102 and to ξ for ξ > 102. The transition

of the dependence is at ξ ∼ β−1. In the models with Γβ = 10−1, 1, and 10, ⟨N⟩ is

proportional to ξ in the range of 10 < ξ < 104. In the model with Γβ = 100, ⟨N⟩ is
proportional to ξ for ξ > 102.

3.3 Summary

In this chapter, we investigate the random walk process in relativistic flow. In the

pure scattering medium, the mean number of scatterings at the size parameter of ξ is

proportional to ξ2 for β/Γ ≪ ξ−1 and to ξ for β/Γ ≫ ξ−1. These dependencies of the

mean number of scatterings on ξ are well reproduced by the numerical simulations.

We also consider the combined scattering and absorption case. If the scattering

opacity dominates the absorption opacity, the behavior of the effective optical depth

is different depending on the velocity β. If β ≪
√

2τa/τs, the effective optical depth

is τ∗ ≃
√
τaτs/2 and if β ≫

√
2τa/τs, τ∗ ≃ (1 + β)τa/β.

In GRB jets, the flow has a ultra-relativistic velocity (Γ ≳ 100) and the electron

scattering opacity dominates the absorption opacity (τs ≫ τa) due to its low density

and high temperature. Thus, the effective optical depth in the jet is approximated

by τ∗ ≃ 2τa. On the other hand, the cocoon have a non-relativistic velocity (e.g.,

Matzner 2003) and the effective optical depth in the cocoon could be much higher

than the absorption optical depth as τ∗ ≃ τa/β ≫ τa. The effective optical depth

defines the photon production site as τ∗ = 1. In the subsequent papers, we will

perform the radiative transfer calculations for the thermal radiation from GRB jet

and cocoon taking into account the photon production at the surface of τ∗ = 1. This

enables us to correctly treat the photon number density at the photon production

sites.

The results could be applicable not only for GRB jet and cocoon but also for

the other astronomical objects such as AGNs or black hole binaries. For example,

the super critical accretion flows around the black holes produce a high temperature

(∼ 108 K) and low density (∼ 10−9 g/cm3) outflow with a semi-relativistic velocity

(∼ 0.1c) (e.g., Kawashima et al. 2009). In these circumstances, the scattering process

have a major role on the photon diffusion and the relativistically corrected treatment

is necessary even though the flow velocity is rather small compared with the speed of
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light.



CHAPTER 4

THERMAL RADIATION FROM GAMMA-RAY BURST

JET

4.1 Overview

As described in Section 1.3, the radiation mechanism of GRB prompt emission is

under debate. Although the internal shock model had been thought to be a standard

scenario for the prompt emission, it is known that the model has problems about

radiative efficiency and the low energy power law spectral index (e.g., Preece et al.

1998). Thus, the alternative models are required at least for the burst which cannot

be explained by the internal shock model.

One of such alternative models is the thermal emission model which explains

the prompt emission with the thermal emission from relativistic jets. The thermal

emission from GRB outflow is a natural consequence of the relativistic fireball model

and has been investigated by many authors since the first suggestions of the fireball

model by Goodman (1986) and Paczynski (1986).

Thermal radiation from GRB jets have been investigated by many authors. For

example, Lazzati et al. (2009, 2011); Mizuta et al. (2011); Nagakura et al. (2011) cal-

culated the light curves or energy spectra by superposing blackbody radiation emitted

from the photosphere, i.e. from the surface of τ = 1 where τ is the optical depth.

However, since the dominant opacity source in the GRB jet is the electron scatter-

ing, the photosphere is just a surface around which the observed photons experience

their last scatterings before escaping from the jet and the radiaion and absorption

processes are extremely inefficient around the photosphere. This implies that the ob-

served photons should be generated far below the photosphere (Beloborodov 2013),

propagate through the jet with experiencing many scatterings, and escape from the

jet. Therefore, in order to treat the thermal radiation from GRB jets properly, both

the radiative transfer in the jets and complex structures of the jets should be taken

into account.

In this chapter, we perform radiative transfer simulation with complicated inner

structures of the jet calculated by performing a hydrodynamical simulation. Then, we

present the results of hydrodynamical simulation and radiative transfer simulation.

44
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Figure 4.1 The density structure of the progenitor star whose mass and metallicity
are 15M⊙ and Z = 10−3, respectively.

4.2 Method

4.2.1 Hydrodynamical Simulation

The jet structure is calculated by 2D relativistic hydrodynamics code with newtonian

self gravity (Section 2.2). A 15M⊙ Wolf-Rayet star with the metallicity of Z = 10−3

is used for the progenitor star (Umeda & Nomoto 2005; Nomoto et al. 2006) whose

density structure is shown in Figure 4.1. The radius of the star is ∼ 2.3× 1010 cm.

The inner boundary is set to be rin = 109 cm and the computational domain

is captured by 600 logalithmical grids in the r-direction and 150 uniform grids in

the θ-direction. The outer boundary of the domain is initially at 2.5 × 1010 cm and

elongated twice when the shock wave reaches near the boundary.

The relativistic jet is injected by imposing boundary conditions at rin. The con-

ditions are the total jet luminosity Ljet = 5.3× 1050 erg s−1, the initial Lorentz factor

Γ0 = 5, the half opening angle of the jet θ0 = 10◦, and the thermal to total energy

density ratio fth = 0.9925 which corresponds to the conditions of specific internal

energy ε0/c
2 = 80.
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4.2.2 Photon Production Site

We evaluate the effective optical depth τ∗ to determine where the observed photons

are produced. With the expression for τ∗ in relativistic flow derived in Shibata et al.

(2014), τ∗ from infinity to a radius R∗ can be calculated as

τ∗ =

∫ ∞

R∗

{
Γ2

3
(β2 + 3) + (Γβ)2

σ′

α′

}− 1
2 √

α′(α′ + σ′)dr, (4.1)

where σ′ and α′ are the scattering and the absorption coefficient in the fluid comoving

frame, respectively. The scattering coefficient is calculated with the Thomson scatter-

ing cross secion as σ′ = neσT. The absorption coefficient include two processes. One

is the free-free absorption (e.g., Rybicki & Lightman 1979) and the other is the double

Compton absorption (e.g., Lightman 1981; Svensson 1984; Beloborodov 2013; Vurm

et al. 2013). Then absorption coefficient for the photon with the energy x ≡ hν/mec
2

can be written as

α′(x) = α′
ff(x) + α′

DC(x), (4.2)

where α′
ff(x) and α′

DC(x) are the absorption coefficient for the free-free and the double

Compton absorption, respectively.

The absorption coefficient of the free-free absorption is written as (e.g., Rybicki

& Lightman 1979)

α′
ff(x) =

αfinλ
3
cσT√
6π

Θ− 1
2Z2nenix

−3(1− e−x/Θ)gff , (4.3)

where αfin is the fine structure constant, λc is the Compton wavelength, Θ = kT/mec
2

is the temperature in units of the electron rest mass energy, Z is the atomic number

of the ion, ne is the electron number density, ni is the ion number density, and gff

is the frequency averaged Gaunt factor. We assume that the ions consist of helium,

which means Z = 2 and ni = ne/2.

The absorption coefficient of the double Compton absorption for Wien distribution

is written as (e.g., Svensson 1984)

α′
DC(x) =

2αfinλ
3
cσT

π2
Θ

1
2nenγx

−3(ex/Θ − 1)gDC, (4.4)

where nγ is the photon number density and gDC is a numerical fitting factor which
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can be expressed as

gDC = (1 + 13.91Θ + 11.05Θ2 + 19.92Θ3)−1. (4.5)

In order to calculate α′
DC(x), we have to know the number density of background

photons nγ at any radius. Although the exact value of nγ can be obtained by per-

forming many radiative transfer calculations iteratively, such iterations must involve

large computational costs. Therefore, we assume that the photons are produced at a

radius R∗ with the number density of the blackbody photons

nγ∗ ≡ nγ(R∗) = 8πΓ(3)ζ(3)

(
kT

hc

)3

, (4.6)

where Γ(3)ζ(3) ≃ 2.404, and nγ(r) decreases as

nγ(r) = nγ∗

(
R∗

r

)2

. (4.7)

To eliminate dependence of the frequency in Eq. (4.3) and (4.4), we assume that

the energy of the photon for which the effective optical depth is calculated is equal to

kT , i.e. x = Θ, because the equipartition between photon energy density and thermal

energy density of the plasma take place at τ ≫ 1 due to a lot of electron scatterings.

We find R∗ = R∗1 which satisfies τ∗ = 1 for each zenith angle θ from jet axis and

obtain the surface at which we assume that the observed photons are produced.

4.2.3 Radiative Transfer Simulation

Radiative transfer simulations are performed with the numerical code based on Monte

Carlo method. We calculate the change of the energy and the propagation direction of

the photons with random numbers. In the calculations, both the fluid bulk motion and

the thermal motion of the electrons are included with special relativistic treatments.

The Klein-Nishina cross section is used for the scattering cross section. The details

of the numerical code are described in Section 2.1.

For simplicity, we take a snapshot of the result of hydrodynamical simulation at

t = 40 s as the hydrodynamical background of the radiative transfer simulations.

Photons are injected at the surface of τ∗ = 1. The energies of injected photons
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are initially determined as to obey the Planck distribution with its local plasma

temperatures. The propagation directions of the injected photons are isotropic in

the fluid rest frame. The spatial distribution of the injected photons at the surface

is determined by the temperature distribution at the surface since we assume that

the photons are injected as the blackbody radiation whose photon number density is

proportional to cubic of the temperature, n ∝ T 3.

After the injection, the photons propagate through the jet with a lot of scatterings

by electrons and escape from the jet when the scattering optical depth decreases to

one or so. We collect the photons escaped parallel to the jet axis and construct the

energy spectrum. The number of injected photons is 3× 108.

4.3 Results

4.3.1 Structures of the Jet and the Cocoon

Figure 4.2 shows the density structure of the jet and the cocoon derived by the

hydrodynamical simulation. We also show the surface of τ∗ = 1. Near the jet axis,

the density is quite low and the free-free absorption is correspondingly very inefficient

since absorption coefficient of the free-free absorption is proportional to the square

of the electron number density, n2
e (see Eq. 4.3), although the absorption coefficient

of the double Compton absorption is proportional to ne. Thus, the main absorption

process is the double Compton absorption in the jet. On the other hand, the density

in the cocoon is much higher than that in the jet. Such high density makes free-free

absorption be the main absorption process in the cocoon and the surface of τ∗ = 1

locates at much larger radius in the cocoon.

The difference of the dominant absorption process causes sudden transition of the

location of τ∗ = 1 surface. The transition occurs at θtr ≃ 6.1◦. This angle is smaller

than the half opening angle which is imposed as the inner boundary condition in the

hydrodynamical simulation, θ0 = 10◦, since the shape of the jet is collimated due

to the interaction of the jet and the stellar matter even after the jet breaks out the

stellar surface.
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Figure 4.2 The density structure of the jet. The upper and lower panels show the
overall structure and the base of the jet, respectively. The solid line represents the
surface of τ∗ = 1. We also show the photosphere by the dotted line for comparison.
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Figure 4.3 The observed spectrum. The red solid represents the entire spectrum. The
green dashed and the blue dotted lines represent the contributions from the jet and
the cocoon, respectively.
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Figure 4.4 The observed spectrum. The dotted line represents the Band function
with low and high energy photon indexes of α = −0.5 and β = −3.

4.3.2 Observed Spectrum

Figure 4.3 shows the energy spectrum observed along the jet axis. Here we divide

the spectrum into two components. Contributions from photons which were injected

at θ ≤ θtr are labeled as jet component and photons injected at θ > θtr are labeled

as cocoon component. The observed spectrum mainly consist of the jet component,

although the cocoon component contributes to the spectrum at much lower energies.

The difference of the peak energies between two components is due to the difference of

typical Lorentz factors of the components around the photosphere (Fig. 4.2(a)) and

the difference of the directions of velocity field because the degree of Doppler boost

of photons energies depends on both the Lorentz factor and the angle between the

directions of the photon propagation and the velocity field. Higher degree of Doppler

boost makes the observed energies of photons higher.

The energy spectrum of the jet component has a peak energy of Ep ≃ 300 keV.

Figure 4.4 shows the comparison between the our result and a pure blackbody spec-
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trum with the temperature of kT = 80 keV. From the figure, it can be seen that the

emergent spectrum has much wider shape than the pure blackbody.

Figure 4.4 also shows a Band function with low and high energy photon indexes

of α = −0.5 and β = −3, respectively. These parameters are consistent with the

observed spectra (Figure 1.7), although they are not typical value. The emergent

spectrum can be well fitted by the Band function if we focus only on the energy range

between 10 keV and 1 MeV. However, the spectrum has a cutoff above 1 MeV and

conflict with the fact that there are many bursts which have high energy power law

even beyond 10 times the peak energy.

4.4 Summary & Discussions

In this chapter, we investigate the spectrum of thermal radiation from relativistic

GRB jet. We calculate radiative transfer for thermal photons in a relativistic GRB

jet of which structure is derived with 2D special relativistic hydrodynamic simulation.

The radiative transfer is calculated with a numerical code based on Monte-Carlo

method.

We find that the radiation from a sub-relativistic cocoon partially contributes to

the spectrum at lower energies, although the spectrum mainly consist of the radiation

from ultra-relativistic jet. We compare our results to the Band function and find

that the spectrum can be well fitted by the Band function around the peak energy,

indicating that thermal emission may be observed as a non-thermal Band function.

The emergent spectrum mainly consists of the jet component and the cocoon

component contributes to the spectrum at much lower energies. Since we performed

radiative transfer calculation with a snapshot of the jet structure, the spectrum is

a superposition of these two components. However, it is expected that the photons

escaping through the cocoon take longer paths than the photons escaping through

the jet. This implies that the cocoon component could be observed at much later

epoch than the jet component (e.g., Lundman et al. 2013). In fact, some authors

have suggested that the thermal emission from the cocoon could be observed at early

afterglow phase (e.g., Pe’er et al. 2006; Suzuki & Shigeyama 2013).

We found that the emergent spectrum is much wider than a pure blackbody

spectrum. On the other hand, the spectrum can be well fitted by the Band function

with parameters that is consistent with the observations if we focus only on the energy
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range between 10keV and 1MeV although the spectrum has no power law component

beyond 1MeV. Rencently, there are some claims that thermal components are exist on

the non-thermal Band functions for several burst (e.g., Guiriec et al. 2011; Axelsson

et al. 2012). In these claims, thermal components are treated as a single temperature

blacbody spectrum. However, according to our result, the shape of the thermal

components may be different from that of the pure blackbody radiation. Thus, we

need to be carefull for the treatment of thermal components.

We used a snapshot of the result of hydrodynamical simulation for the jet struc-

ture. However, relativistic jets have velocities which are similar to speed of light

and the fluid motion during the photon propagation could be important for radiative

transfer calculations. For example, the fluid bulk motion can affect the estimation of

the optical depth(Nagakura et al. 2011) and change the position of the photosphere

and photon production site. Furthermore, shock waves propagating with comparable

speed of light are known as the site which energize the photons propagating many

times through the shock (Blandford & Payne 1981). In fact, it is suggested that the

energization of photons by shock waves is important for the formation of non-thermal

spectrum of the radiation from relativisitc shock breakout (e.g., Wang et al. 2007;

Suzuki & Shigeyama 2010). In order to include the fluid motion during the photon

propagation, we will perform time dependent radiative transfer simulation in future.

Such time dependent calculations can provide consistent light curves and spectral

evolution which should be important information.

We investigate only for one model in this thesis. The spectrum should depends on

the jet parameters such as luminosity, opening angle, or total energy. The property

of the progenitor and circum stellar matter may also be important. The dimension-

ality of the hydrodynamical simulation should also affect the radiative properties.

In 3-dimensional simulations, the structure of relativistic jet could be more complex

than the result of 2-dimensional simulation (e.g., López-Cámara et al. 2013). For

example, Rayleigh-Taylor instability on the boundary between the jet and the stellar

matter may be important for the dynamics of the jet and make the jet more complex

(Matsumoto & Masada 2013). Such complexity of the jet could lead to the diversity

of propagating photons and affect the observational properties.



CHAPTER 5

SUMMARY

In this thesis, we investigate the random walk process in relativistic flow and construct

an analytic expression for the effective optical depth in relativistic flow. Then, we

apply the theory to the thermal photons radiated from relativistic jet which penetrates

from massive star and results in the gamma-ray burst.

We investigate the random walk process in the relativistic flow. In the pure

scattering medium, the mean number of scatterings at the size parameter of ξ is

proportional to ξ2 for β/Γ ≪ ξ−1 and to ξ for β/Γ ≫ ξ−1. These dependencies of the

mean number of scatterings on ξ are well reproduced by the numerical simulations.

We also consider the combined scattering and absorption case. If the scattering

opacity dominates the absorption opacity, the behavior of the effective optical depth

is different depending on the velocity β. If β ≪
√

2τa/τs, the effective optical depth

is τ∗ ≃
√
τaτs/2 and if β ≫

√
2τa/τs, τ∗ ≃ (1 + β)τa/β.

Applying the derived analytic expression for the effective optical depth, we in-

vestigate the spectrum of thermal radiation from relativistic GRB jet. We calculate

radiative transfer for thermal photons in a relativistic GRB jet of which structure is

derived with 2D special relativistic hydrodynamic simulation. The radiative transfer

is calculated with a numerical code based on Monte-Carlo method. We found that

the emergent spectrum has a much wider shape than a pure blackbody spectrum.

On the other hand, the spectrum can be well fitted by the Band function with pa-

rameters that is observationally consistent with the observations if we focus on the

energy range between 10keV and 1MeV, while the spectrum has no power laws be-

yond 1MeV, indicating that the thermal emission may be observed as a non-thermal

Band function.

There are some claims that the thermal components exist on the non-thermal

Band functions for several bursts (e.g., Guiriec et al. 2011; Axelsson et al. 2012).

In these claims, thermal components are treated as a single temperature blacbody

spectrum. However, according to our result, the shape of the thermal components

may be different from that of the pure blackbody radiation. Thus, we need to be

carefull for the treatment of thermal components.
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